ВУЗ:
Составители:
Рубрика:
Теория множеств
22
Если 1
=m
, то данный класс эквивалентности
[]
Ζ
ΖΖ
Ζ
=
0, других классов
эквивалентности просто не существует, и
[]
{}
0/
=
ρ
Ζ
ΖΖ
Ζ
. Если 1
>m
, то
существуют элементы, не попавшие в построенный класс, например, элемент
1. Построим класс эквивалентности, порожденный 1
[]
{}{ }
=−∈=≈∈=
mнаделитсяyyyy
1:1:1
Ζ
ΖΖ
ΖΖ
ΖΖ
Ζ
{}{}
=⋅−=∈∃∈=⋅=−∈∃∈=
mkykymkyky
1:1:
Ζ
ΖΖ
ΖΖ
ΖΖ
ΖΖ
ΖΖ
ΖΖ
ΖΖ
Ζ
{}
,...1,1,...,31,31,21,21,1,1,1
kmkmmmmmmm +−+−+−+−=
.
При 2
=m
построенные два класса эквивалентности при объединении дают
все множество
Ζ
ΖΖ
Ζ
и поэтому построение классов эквивалентности закончено,
в противном случае существует элемент, например 3, не попавший ни в один
из этих классов эквивалентности, и нужно перейти к построению класса
эквивалентности, порожденного 2. Продолжая данный процесс, при любом
m
мы построим классы эквивалентности
[][] [ ]
1,...,1,0
−m
,
которые не пересекаются и при объединении дают все множество
Ζ
ΖΖ
Ζ
. Таким
образом,
{}{}
1,...,2,1:,...,,...,,,/
−=+−+−=
mnkmnkmnmnmnn
ρ
Ζ
ΖΖ
Ζ
.
Задача 3
. На плоскости
Ρ
ΡΡ
Ρ
выбрана некоторая декартова
прямоугольная система координат. На
Ρ
ΡΡ
Ρ
заданы три отношения
эквивалентности:
()()(){}
Ζ
ΖΖ
ΖΡ
ΡΡ
ΡΡ
ΡΡ
Ρ
∈−=×∈=
221121211
,:,,,
bababbaa
ρ
;
()()(){}
Ζ
ΖΖ
ΖΖ
ΖΖ
ΖΡ
ΡΡ
ΡΡ
ΡΡ
Ρ
∈−∈−×∈=
221121212
,:,,,
bababbaa
ρ
;
()()(){}
Ζ
ΖΖ
ΖΡ
ΡΡ
ΡΡ
ΡΡ
Ρ
∈−+−×∈=
221121213
:,,,
bababbaa
ρ
.
Найдите фактор-множества для данных отношений эквивалентности.
Решение. Построим фактор-множество для отношения
1
ρ
. Класс
эквивалентности, порожденный произвольным элементом
()
Ρ
ΡΡ
Ρ
∈
21
,
aa
,
имеет вид
()
[]
() ( )()(){}(){}
=∈−=∈=∈∈=
Ζ
ΖΖ
ΖΡ
ΡΡ
ΡΡ
ΡΡ
Ρ
yaaxyxyxaayxaa
2112121
,:,,,,:,,
ρ
(){}
==−=∈∃∈=
kyaaxkyx
21
,:,
Ζ
ΖΖ
ΖΡ
ΡΡ
Ρ
(){}
=−==∈∃∈=
kayaxkyx
21
,:,
Ζ
ΖΖ
ΖΡ
ΡΡ
Ρ
(){}
Ζ
ΖΖ
ΖΡ
ΡΡ
Ρ
∈∈−=
kkaa
:,
21
.
Таким образом, в класс эквивалентности, порожденный элементом
()
Ρ
ΡΡ
Ρ
∈
21
,
aa
10,
21
<≤∈
aRa
, попадают вместе с элементом
()
Ρ
ΡΡ
Ρ
∈
21
,
aa
элементы, у которых первая координата равна
1
a
, а вторая координата
отличается от
2
a
на целое число. Классы эквивалентности, порожденные
элементами с
10,
21
<≤∈
aRa
, не пересекаются и в объединении дают все
множество
Ρ
ΡΡ
Ρ
. Следовательно, фактор-множество
1
/
ρ
Ρ
ΡΡ
Ρ
можно записать в
виде
()
[
){}
1,0,:}:,{/
1
∈∈∈+=
β
α
β
α
ρ
Rkk
Ζ
ΖΖ
ΖΡ
ΡΡ
Ρ
.
Страницы
- « первая
- ‹ предыдущая
- …
- 20
- 21
- 22
- 23
- 24
- …
- следующая ›
- последняя »