Методические указания к выполнению виртуальных лабораторных работ по разделу "Электрические цепи" курса "Теоретические основы электротехники". Бандурин И.И. - 14 стр.

UptoLike

Составители: 

Рубрика: 

14
или ....
1
21 n
ЭКВ
ЭКВ
RRR
G
R
Если цепь имеет лишь три приемника,
.
.
.
.
1
313221
321
321
RRRRRR
RRR
RRR
G
R
ЭКВ
ЭКВ
Если цепь имеет только два приемника,
.,
,
21
21
n
n
ЭКВ
ЭКВ
R
U
I
R
U
I
RR
RR
R
4.4. Применение законов Кирхгофа
4.4.1. Первый закон Кирхгофа
Первый закон Кирхгофа может быть сформулирован двояко.
Первая формулировка: алгебраическая сумма токов, подтекающих к
узлу схемы, равна нулю.
Вторая формулировка: сумма подтекающих к любому узлу токов равна
сумме утекающих от узла токов.
Рис. 6
Так, применительно к рис. 6, если подтекающие к узлу токи считать
положительными, а утекающие отрицательными, то согласно первой
формулировке
;0
4321
IIII
согласно второй
.
4321
IIII
4.4.2. Второй закон Кирхгофа
Второй закон Кирхгофа также может быть сформулирован двояко.
Первая формулировка: алгебраическая сумма падений напряжений в
любом замкнутом контуре равняется алгебраической сумме э.д.с. вдоль того
же контура.
.
EIR
                                                                                         14
              1
или RЭКВ            R1 R2 ... Rn .
             GЭКВ
Если цепь имеет лишь три приемника,
                                 1                              R1  R2  .R3
                       RЭКВ            R1 R2 .R3                                  .
                                GЭКВ                    R1  R2  R2  .R3  R1  R3
Если цепь имеет только два приемника,
                                                   R1  R2
                                         RЭКВ             ,
                                                   R1  R2
                                               U          U
                                         I        , In     .
                                              RЭКВ        Rn

  4.4. Применение законов Кирхгофа
     4.4.1. Первый закон Кирхгофа
Первый закон Кирхгофа может быть сформулирован двояко.
      Первая формулировка: алгебраическая сумма токов, подтекающих к
узлу схемы, равна нулю.
      Вторая формулировка: сумма подтекающих к любому узлу токов равна
сумме утекающих от узла токов.




                                                  Рис. 6

     Так, применительно к рис. 6, если подтекающие к узлу токи считать
положительными, а утекающие – отрицательными, то согласно первой
формулировке
                                          I 1  I 2  I 3  I 4  0;
согласно второй
                                            I1  I 2  I 3  I 4 .

    4.4.2. Второй закон Кирхгофа
Второй закон Кирхгофа также может быть сформулирован двояко.
     Первая формулировка: алгебраическая сумма падений напряжений в
любом замкнутом контуре равняется алгебраической сумме э.д.с. вдоль того
же контура.
                                               IR   E.