Теория вероятностей. Барышева В.К - 135 стр.

UptoLike

M[y|X = 1], M[y|X =
0], M[y|X = 1]
cov(X, Y )
X Y X Y
M[2X + 4Y ]
D[X], D[Y ], σ[X], σ[Y ], D[2X + 4Y ]
r
x,y
.
cov (X, Y ) = 0, 225;
X Y
f(x, y) =
1
2
sin(x + y) 0 x
π
2
, 0 y
π
2
0
m
x
, m
y
d
x
, d
y
σ
x
, σ
y
M[XY ] cov(x, y) r
x
, y.
m
x
= m
y
=
π
4
, d
x
= d
y
= σ
2
x
= σ
2
y
=
π
2
+ 8π 32
16
,
cov(x, y) =
π
2
+ 8π 16
16
.
D[X + Y ] = 25; D[X] + D[Y ] = 13;
cov(X, Y ).
cov(x, y) = 6
D[X] = 7, D[Y ] = 5, cov(x, y) = 3.
D[x 2y + 3].
D[x 2y + 3] = 15.
f(x, y) = Axy · exp((x
2
+ y
2
)), x 0, y 0
A
(X, Y )?