Теория вероятностей. Барышева В.К - 62 стр.

UptoLike

N
X
f(x) =
Cx
2
e
x
, x > 0
0, x < 0
C
F (x)
(1, 3).
H
1 =
Z
+
−∞
f(x)dx =
Z
0
−∞
f(x)dx +
Z
+
0
f(x)dx =
= 0 + C
Z
+
0
x
2
e
x
dx = C lim
a+
Z
a
0
x
2
e
x
dx =
= C lim
a→∞
2
a
2
+ 2a + 2
e
a
= 2C C =
1
2
.
f(x) =
1
2
x
2
e
x
, x > 0
0, x < 0
x < 0 : F (x) =
Z
x
−∞
f(x)dx = 0, f(x) = 0.
x > 0 : F (x) =
Z
x
−∞
f(x)dx =
Z
0
−∞
f(x)dx +
Z
x
0
f(t)dt =
= 0 +
Z
x
0
f(t)dt = (1/2)
Z
x
0
t
2
e
t
dt =
= (1/2)
t
2
+ 2t + 2
e
t
x
0
=
=
1
2
x
2
+ 2x + 2
e
x
+ 2
= 1
x
2
+ 2x + 2
2e
x
.
F (x) =
1
x
2
+2x+2
2e
x
, x > 0
0, x < 0
.