ВУЗ:
Составители:
Рубрика:
39
Составим уравнение равновесия:
∑
=
k
kx
F ;0 ,0sincoscos
1
=
⋅
⋅
−
⋅
−
+
β
α
γ
TPXX
AB
(1)
∑
=
k
ky
F ;0 ,0coscos
=
⋅
⋅
−
β
α
TY
A
(2)
∑
=
k
kz
F ;0 ,0sinsin
21
=
⋅
+
−
⋅
+
+
α
γ
TPPZZ
BA
(3)
(
)
∑
=
k
kx
Fm ;0
r
,0sin
2
2
=⋅⋅+⋅+⋅−
aTaZ
a
P
A
α
(4)
(
)
;0=
∑
k
k
y
Fm
r
,0sin
2
sin
21
=⋅⋅−⋅+⋅⋅−
bT
b
PbP
αγ
(5)
(
)
∑
=
k
kz
Fm ;0
r
.0sincoscoscos
=
⋅
⋅
⋅
+
⋅
⋅
⋅
−
⋅
−
aTbTaXM
A
β
α
β
α
(6)
Решая систему уравнений
(
)
(
)
,61
−
определим:
из (5)
( )
,35sin
2sin
1
1
2
HP
P
T =
⋅−⋅= γ
α
из (6)
( )
,7,46sincoscoscos HTT
a
b
a
M
X
A
=⋅⋅+⋅⋅⋅−= βαβα
из (4)
( )
,1,20sin
2
2
HT
P
Z
A
−=⋅−= α
из (2)
(
)
,0,15coscos HTY
A
=
⋅
⋅
=
β
α
из (3)
(
)
HTZPPZ
AB
3sinsin
12
=
⋅
−
−
⋅
−
=
α
γ
,
из (1)
(
)
,45,48sincoscos
1
HXTPX
AB
−
=
−
⋅
⋅
+
⋅
=
β
α
γ
39 Составим уравнение равновесия: ∑ Fkx = 0; X B + X A − P1 ⋅ cos γ − T ⋅ cosα ⋅ sin β = 0, (1) k ∑ Fky = 0; YA − T ⋅ cosα ⋅ cos β = 0, (2) k ∑ Fkz = 0; Z A + Z B + P1 ⋅ sin γ − P2 + T ⋅ sin α = 0, (3) k ∑ mx (Fk ) = 0; r a − P2 ⋅ + Z A ⋅ a + T ⋅ sin α ⋅ a = 0, (4) k 2 ( ) r b ∑ y k = 0; m F − P1 ⋅ sin γ ⋅ b + P2 ⋅ 2 − T ⋅ sin α ⋅ b = 0, (5) k ( ) r ∑ z k = 0; m F M − X A ⋅ a − T ⋅ cosα ⋅ cos β ⋅ b + T ⋅ cosα ⋅ sin β ⋅ a = 0. (6) k Решая систему уравнений (1) − (6 ), определим: 1 P2 из (5) T= ⋅ − P1 ⋅ sin γ = 35(H ), sin α 2 − ⋅ T ⋅ cos α ⋅ cos β + T ⋅ cos α ⋅ sin β = 46,7(H ), M b из (6) XA = a a Z A = 2 − T ⋅ sin α = −20,1(H ), P из (4) 2 из (2) YA = T ⋅ cos α ⋅ cos β = 15,0(H ), из (3) Z B = P2 − P1 ⋅ sin γ − Z A − T ⋅ sin α = 3(H ) , из (1) X B = P1 ⋅ cos γ + T ⋅ cos α ⋅ sin β − X A = −48,45(H ),
Страницы
- « первая
- ‹ предыдущая
- …
- 37
- 38
- 39
- 40
- 41
- …
- следующая ›
- последняя »