ВУЗ:
Составители:
Рубрика:
41
Ⱥɤɬɢɜɧɵɦɢ ɫɢɥɚɦɢ ɹɜɥɹɸɬɫɹ: Ɋ – ɜɟɫ ɤɪɢɜɨɲɢɩɚ, Ɋ
2
– ɜɟɫ ɤɨɥɟɫɚ 2,
m
0
– ɜɪɚɳɚɸɳɢɣ ɦɨɦɟɧɬ, ɩɪɢɥɨɠɟɧɧɵɣ ɤ ɤɪɢɜɨɲɢɩɭ ɈȺ. ȼɫɟ ɫɜɹɡɢ,
ɧɚɥɨɠɟɧɧɵɟ ɧɚ ɫɢɫɬɟɦɭ, ɢɞɟɚɥɶɧɵ.
Ⱦɚɞɢɦ ɤɪɢɜɨɲɢɩɭ
ɈȺ ɜɨɡɦɨɠɧɨɟ ɭɝɥɨɜɨɟ ɩɟɪɟɦɟɳɟɧɢɟ
G
M
ɜ
ɧɚɩɪɚɜɥɟɧɢɢ ɜɨɡɪɚɫɬɚɧɢɹ ɭɝɥɚ
M
, ɬ. ɟ. ɩɪɨɬɢɜ ɱɚɫɨɜɨɣ ɫɬɪɟɥɤɢ.
Ⱦɥɹ ɨɩɪɟɞɟɥɟɧɢɹ ɨɛɨɛɳɟɧɧɨɣ ɫɢɥɵ
Q
M
ɜɵɱɢɫɥɢɦ ɫɭɦɦɭ ɪɚɛɨɬ
ɚɤɬɢɜɧɵɯ ɫɢɥ ɧɚ ɜɨɡɦɨɠɧɨɦ ɩɟɪɟɦɟɳɟɧɢɢ
GM
:
GMMGMMGMG
coscos
20
OAPOCPmA
.
Ɍɚɤ ɤɚɤ
OA=O
P
-A
P
=r
1
-r
2
, ɚ
OC
OA
rr
22
12
, ɬɨ
>@
GMGM
AmPPrr
1
2
22
0212
cos
. (1)
ɍɱɢɬɵɜɚɹ, ɱɬɨ
G
G
M
M
AQ
, ɧɚɯɨɞɢɦ ɨɛɨɛɳɟɧɧɭɸ ɫɢɥɭ, ɫɨɨɬɜɟɬɫɬɜɭɸɳɭɸ
ɨɛɨɛɳɟɧɧɨɣ ɤɨɨɪɞɢɧɚɬɟ
M
:
>@
QmPPrr
M
M
1
2
22
0212
cos
. (2)
ɉɟɪɟɯɨɞɢɦ ɤ ɜɵɱɢɫɥɟɧɢɸ ɤɢɧɟɬɢɱɟɫɤɨɣ ɷɧɟɪɝɢɢ
Ɍ ɦɟɯɚɧɢɡɦɚ, ɜ ɫɨɫɬɚɜ
ɤɨɬɨɪɨɝɨ ɜɯɨɞɹɬ ɦɚɫɫɵ ɤɪɢɜɨɲɢɩɚ
ɈȺ ɢ ɡɭɛɱɚɬɨɝɨ ɤɨɥɟɫɚ 2 (ɡɭɛɱɚɬɨɟ
ɤɨɥɟɫɨ 1 ɧɟɩɨɞɜɢɠɧɨ), ɬ. ɟ.
TT
T
() ( )12
. (3)
Ʉɢɧɟɬɢɱɟɫɤɚɹ ɷɧɟɪɝɢɹ ɤɪɢɜɨɲɢɩɚ
ɈȺ, ɜɪɚɳɚɸɳɟɝɨɫɹ ɜɨɤɪɭɝ ɧɟɩɨɞɜɢɠɧɨɣ
ɨɫɢ
Ɉ, ɩɟɪɩɟɧɞɢɤɭɥɹɪɧɨɣ ɤ ɩɥɨɫɤɨɫɬɢ ɪɢɫɭɧɤɚ, ɨɩɪɟɞɟɥɹɟɬɫɹ ɮɨɪɦɭɥɨɣ
TI
O
()
12
1
2
M
, ɝɞɟ
I
P
g
OA
P
g
rr
O
1
3
1
3
2
12
2
– ɦɨɦɟɧɬ ɢɧɟɪɰɢɢ
ɤɪɢɜɨɲɢɩɚ. ɋɥɟɞɨɜɚɬɟɥɶɧɨ,
T
P
g
rr
()
()
1
12
22
1
6
M
. (4)
Ʉɢɧɟɬɢɱɟɫɤɚɹ ɷɧɟɪɝɢɹ ɡɭɛɱɚɬɨɝɨ ɤɨɥɟɫɚ 2, ɫɨɜɟɪɲɚɸɳɟɝɨ ɩɥɨɫɤɨɟ
ɞɜɢɠɟɧɢɟ, ɪɚɜɧɚ
T
P
g
vI
AA
()2
2
2
2
2
1
2
1
2
Z
. (5)
ɇɚɣɞɟɦ ɫɤɨɪɨɫɬɶ ɬɨɱɤɢ
Ⱥ, ɹɜɥɹɸɳɟɣɫɹ ɤɨɧɰɨɦ ɤɪɢɜɨɲɢɩɚ ɈȺ:
vOA rr
A
()
M
M
12
. (6)
Ɋɚɫɫɦɨɬɪɢɦ ɫɤɨɪɨɫɬɶ ɬɨɣ ɠɟ ɬɨɱɤɢ Ⱥ, ɩɪɢɧɚɞɥɟɠɚɳɟɣ ɡɭɛɱɚɬɨɦɭ ɤɨɥɟɫɭ 2,
ɩɨ ɨɬɧɨɲɟɧɢɸ ɤ ɦɝɧɨɜɟɧɧɨɦɭ ɰɟɧɬɪɭ ɫɤɨɪɨɫɬɟɣ
P
ɤɨɥɟɫɚ:
22
Z
rv
A
. (7)
ɋɨɩɨɫɬɚɜɥɹɹ ɮɨɪɦɭɥɵ (6) ɢ (7), ɧɚɯɨɞɢɦ:
ZM
2
12
2
rr
r
. (8)
Ɇɨɦɟɧɬ ɢɧɟɪɰɢɢ ɡɭɛɱɚɬɨɝɨ ɤɨɥɟɫɚ 2 ɜɵɱɢɫɥɹɟɬɫɹ ɩɨ ɮɨɪɦɭɥɟ
I
Pr
g
A
22
2
2
. (9)
Ⱥɤɬɢɜɧɵɦɢ ɫɢɥɚɦɢ ɹɜɥɹɸɬɫɹ: Ɋ – ɜɟɫ ɤɪɢɜɨɲɢɩɚ, Ɋ2 – ɜɟɫ ɤɨɥɟɫɚ 2, m0 – ɜɪɚɳɚɸɳɢɣ ɦɨɦɟɧɬ, ɩɪɢɥɨɠɟɧɧɵɣ ɤ ɤɪɢɜɨɲɢɩɭ ɈȺ. ȼɫɟ ɫɜɹɡɢ, ɧɚɥɨɠɟɧɧɵɟ ɧɚ ɫɢɫɬɟɦɭ, ɢɞɟɚɥɶɧɵ. Ⱦɚɞɢɦ ɤɪɢɜɨɲɢɩɭ ɈȺ ɜɨɡɦɨɠɧɨɟ ɭɝɥɨɜɨɟ ɩɟɪɟɦɟɳɟɧɢɟ GM ɜ ɧɚɩɪɚɜɥɟɧɢɢ ɜɨɡɪɚɫɬɚɧɢɹ ɭɝɥɚ M , ɬ. ɟ. ɩɪɨɬɢɜ ɱɚɫɨɜɨɣ ɫɬɪɟɥɤɢ. Ⱦɥɹ ɨɩɪɟɞɟɥɟɧɢɹ ɨɛɨɛɳɟɧɧɨɣ ɫɢɥɵ QM ɜɵɱɢɫɥɢɦ ɫɭɦɦɭ ɪɚɛɨɬ ɚɤɬɢɜɧɵɯ ɫɢɥ ɧɚ ɜɨɡɦɨɠɧɨɦ ɩɟɪɟɦɟɳɟɧɢɢ GM : GA m0GM P OC cos M GM P2 OA cos M GM . OA r1 r2 Ɍɚɤ ɤɚɤ OA=OP-AP=r1-r2, ɚ OC , ɬɨ 2 2 1 GA > 2 @ 2m0 P 2 P2 r1 r2 cosM GM . (1) ɍɱɢɬɵɜɚɹ, ɱɬɨ GA QM GM , ɧɚɯɨɞɢɦ ɨɛɨɛɳɟɧɧɭɸ ɫɢɥɭ, ɫɨɨɬɜɟɬɫɬɜɭɸɳɭɸ 1 ɨɛɨɛɳɟɧɧɨɣ ɤɨɨɪɞɢɧɚɬɟ M : QM > 2 @ 2m0 P 2 P2 r1 r2 cosM . (2) ɉɟɪɟɯɨɞɢɦ ɤ ɜɵɱɢɫɥɟɧɢɸ ɤɢɧɟɬɢɱɟɫɤɨɣ ɷɧɟɪɝɢɢ Ɍ ɦɟɯɚɧɢɡɦɚ, ɜ ɫɨɫɬɚɜ ɤɨɬɨɪɨɝɨ ɜɯɨɞɹɬ ɦɚɫɫɵ ɤɪɢɜɨɲɢɩɚ ɈȺ ɢ ɡɭɛɱɚɬɨɝɨ ɤɨɥɟɫɚ 2 (ɡɭɛɱɚɬɨɟ ɤɨɥɟɫɨ 1 ɧɟɩɨɞɜɢɠɧɨ), ɬ. ɟ. T T (1) T ( 2 ) . (3) Ʉɢɧɟɬɢɱɟɫɤɚɹ ɷɧɟɪɝɢɹ ɤɪɢɜɨɲɢɩɚ ɈȺ, ɜɪɚɳɚɸɳɟɝɨɫɹ ɜɨɤɪɭɝ ɧɟɩɨɞɜɢɠɧɨɣ ɨɫɢ Ɉ, ɩɟɪɩɟɧɞɢɤɭɥɹɪɧɨɣ ɤ ɩɥɨɫɤɨɫɬɢ ɪɢɫɭɧɤɚ, ɨɩɪɟɞɟɥɹɟɬɫɹ ɮɨɪɦɭɥɨɣ 1 1P 1P 2 T (1) I M 2 , ɝɞɟ IO OA 2 r r – ɦɨɦɟɧɬ ɢɧɟɪɰɢɢ 2 O 3g 3g 1 2 (1) 1P ɤɪɢɜɨɲɢɩɚ. ɋɥɟɞɨɜɚɬɟɥɶɧɨ, T (r r ) 2 M 2 . (4) 6g 1 2 Ʉɢɧɟɬɢɱɟɫɤɚɹ ɷɧɟɪɝɢɹ ɡɭɛɱɚɬɨɝɨ ɤɨɥɟɫɚ 2, ɫɨɜɟɪɲɚɸɳɟɝɨ ɩɥɨɫɤɨɟ (2) 1 P2 2 1 ɞɜɢɠɟɧɢɟ, ɪɚɜɧɚ T v I Z2 . (5) 2 g A 2 A 2 ɇɚɣɞɟɦ ɫɤɨɪɨɫɬɶ ɬɨɱɤɢ Ⱥ, ɹɜɥɹɸɳɟɣɫɹ ɤɨɧɰɨɦ ɤɪɢɜɨɲɢɩɚ ɈȺ: v A OA M (r1 r2 )M . (6) Ɋɚɫɫɦɨɬɪɢɦ ɫɤɨɪɨɫɬɶ ɬɨɣ ɠɟ ɬɨɱɤɢ Ⱥ, ɩɪɢɧɚɞɥɟɠɚɳɟɣ ɡɭɛɱɚɬɨɦɭ ɤɨɥɟɫɭ 2, ɩɨ ɨɬɧɨɲɟɧɢɸ ɤ ɦɝɧɨɜɟɧɧɨɦɭ ɰɟɧɬɪɭ ɫɤɨɪɨɫɬɟɣ P ɤɨɥɟɫɚ: v A r2Z2 . (7) r1 r2 ɋɨɩɨɫɬɚɜɥɹɹ ɮɨɪɦɭɥɵ (6) ɢ (7), ɧɚɯɨɞɢɦ: Z 2 M . (8) r2 Ɇɨɦɟɧɬ ɢɧɟɪɰɢɢ ɡɭɛɱɚɬɨɝɨ ɤɨɥɟɫɚ 2 ɜɵɱɢɫɥɹɟɬɫɹ ɩɨ ɮɨɪɦɭɥɟ P2 r22 IA . (9) 2g 41
Страницы
- « первая
- ‹ предыдущая
- …
- 39
- 40
- 41
- 42
- 43
- …
- следующая ›
- последняя »