Составители:
Рубрика:
25
устанавливалась температура
1
T
, а по другую температура
2
T
. Стационарное
течение газа через пробку называется процессом Джоуля-Томсона, а изменение
температур при таком течении эффектом Джоуля-Томсона.
Применим к эффекту Джоуля-Томсона первое начало термодинамики.
Помня, что процесс адиабатический (т.е. газ не получает тепла, состояние пробки
и ее внутренняя энергия не изменяются), можно записать
2 1 2 2 2 1 11
( )0
U U A U P V U PV
-+=+-+=
. (4.1)
Заметим, что из уравнения (4.1) следует постоянство энтальпии
I U PV
=+
в процессе Джоуля-Томсона. Используем это свойство для определения разности
температур
T
D
в процессе Джоуля-Томсона при разности давлений
P
D
:
TP
P
II
P
IV
TV
PT
TT
I
PPC
T
¶¶
æö æö
-
ç÷ ç÷
¶¶
D¶
èø èøæöæö
»=-=
ç÷ç÷
¶
D¶
æö
èøèø
ç÷
¶
èø
, (4.2)
Для дальнейшего использования формулы (4.2) необходимо определить
уравнение состояния. В частности, можно видеть, что для идеального газа
числитель выражения в правой части (4.2) обращается в ноль.
Рассмотрим более реалистическое приближение для уравнения состояния.
Как известно, отступление от законов идеального газа объясняется
существованием межмолекулярных сил, которыми пренебрегают в модели
идеального газа. Из опыта мы знаем, что потенциальную энергию
межмолекулярного взаимодействия можно приближенно представить в виде
потенциала Леннарда-Джонса
12
126
()
aa
Wr
rr
=-
,
здесь
1
a
и
2
a
– положительные константы. Отсюда видно, что на малых
расстояниях межмолекулярные силы носят резко отталкивающий характер, а на
больших расстояниях – притягивающий. Для учета этих особенностей
молекулярного взаимодействия в модели газа Ван-дер-Ваальса вводят две
поправки.
Первая поправка связана с взаимодействием молекул на малых
расстояниях, где оно заменяется взаимодействием абсолютно упругих твердых
шаров некоторого радиуса
0
r
, так что
0
()Wrr
<= ¥
. Это приводит к тому, что при
столкновении центры молекул не могут сблизиться на расстояние меньшее
0
2
r
.
устанавливалась температура T1 , а по другую температура T2 . Стационарное течение газа через пробку называется процессом Джоуля-Томсона, а изменение температур при таком течении эффектом Джоуля-Томсона. Применим к эффекту Джоуля-Томсона первое начало термодинамики. Помня, что процесс адиабатический (т.е. газ не получает тепла, состояние пробки и ее внутренняя энергия не изменяются), можно записать U 2 - U1 + A U=2 + P2V2 - (U1 + P1V1) = 0 . (4.1) Заметим, что из уравнения (4.1) следует постоянство энтальпии I = U + PV в процессе Джоуля-Томсона. Используем это свойство для определения разности температур DT в процессе Джоуля-Томсона при разности давлений DP : æ ¶I ö æ ¶V ö ç ÷ Tç ÷ -V æ DT ö æ ¶T ö è ¶P øT è ¶T ø P ç ÷ »ç ÷ =- ¶I = , (4.2) è DP øI è ¶P øI æ ö C P ç ÷ è ¶T ø P Для дальнейшего использования формулы (4.2) необходимо определить уравнение состояния. В частности, можно видеть, что для идеального газа числитель выражения в правой части (4.2) обращается в ноль. Рассмотрим более реалистическое приближение для уравнения состояния. Как известно, отступление от законов идеального газа объясняется существованием межмолекулярных сил, которыми пренебрегают в модели идеального газа. Из опыта мы знаем, что потенциальную энергию межмолекулярного взаимодействия можно приближенно представить в виде потенциала Леннарда-Джонса a1 a2 W (r ) = 12 - 6, r r здесь a1 и a2 – положительные константы. Отсюда видно, что на малых расстояниях межмолекулярные силы носят резко отталкивающий характер, а на больших расстояниях – притягивающий. Для учета этих особенностей молекулярного взаимодействия в модели газа Ван-дер-Ваальса вводят две поправки. Первая поправка связана с взаимодействием молекул на малых расстояниях, где оно заменяется взаимодействием абсолютно упругих твердых шаров некоторого радиуса r0 , так что W ( r < r=0) ¥ . Это приводит к тому, что при столкновении центры молекул не могут сблизиться на расстояние меньшее 2r0 . 25
Страницы
- « первая
- ‹ предыдущая
- …
- 23
- 24
- 25
- 26
- 27
- …
- следующая ›
- последняя »