ВУЗ:
Рубрика:
2 §1. ðÒÏÉÚ×ÏÄÎÁÑ ÆÕÎËÃÉÉ
ÔÏ y(x
0
) =
1
x
0
É y(x
0
+ 4x) =
1
x
0
+4x
, ÐÏÜÔÏÍÕ
4 y(x
0
) = y(x
0
+ 4x) − y(x
0
) =
1
x
0
+ 4x
−
1
x
0
=
=
x
0
− (x
0
+ 4x)
x
0
(x
0
+ 4x)
=
− 4 x
x
0
(x
0
+ 4x)
.
ïÔÓÀÄÁ,
4y(x
0
)
4x
=
−4x
x
0
(x
0
+4x)
4x
= −
1
x
0
(x
0
+ 4x)
.
óÌÅÄÏ×ÁÔÅÌØÎÏ,
y
0
(x
0
) = lim
4x→0
4y(x
0
)
4x
= lim
4x→0
−
1
x
0
(x
0
+ 4x)
= − lim
4x→0
1
x
2
0
+ x
0
4 x
= −
1
x
2
0
.
ôÁË ËÁË × ËÁÞÅÓÔ×Å x
0
ÍÏÖÎÏ ×ÚÑÔØ ÌÀÂÏÅ ÞÉÓÌÏ ÎÅÒÁ×ÎÏÅ ÎÕÌÀ, ÔÏ ÄÌÑ
ÌÀÂÏÇÏ ÞÉÓÌÁ x 6= 0 ÐÏÌÕÞÁÅÍ
y
0
(x) =
1
x
0
= −
1
x
2
.
îÁÐÒÉÍÅÒ, y
0
(−2) = −
1
(−2)
2
= −
1
4
.
ðÒÉÍÅÒ 2. îÁÊÔÉ ÐÏ ÏÐÒÅÄÅÌÅÎÉÀ ÐÒÏÉÚ×ÏÄÎÕÀ ÆÕÎËÃÉÉ y = sin x.
òÅÛÅÎÉÅ. úÁÆÉËÓÉÒÕÅÍ ÐÒÏÉÚ×ÏÌØÎÕÀ ÔÏÞËÕ x
0
. ôÁË ËÁË y(x) = sin x,
ÔÏ y(x
0
) = sin x
0
É y(x
0
+ 4x) = sin(x
0
+ 4x), ÐÏÜÔÏÍÕ
4y(x
0
) = y(x
0
+ 4x) − y(x
0
) = sin(x
0
+ 4x) − sin x
0
.
óÌÅÄÏ×ÁÔÅÌØÎÏ,
4y(x
0
)
4x
=
sin(x
0
+ 4x) − sin x
0
4x
=
=
2 sin
4x
2
cos
x
0
+
4x
2
4x
=
sin
4x
2
4x
2
cos
x
0
+
4x
2
.
÷ÏÓÐÏÌØÚÏ×Á×ÛÉÓØ ÎÅÐÒÅÒÙ×ÎÏÓÔØÀ ÆÕÎËÃÉÉ sin x É ÐÅÒ×ÙÍ ÚÁÍÅÞÁÔÅÌØÎÙÍ
ÐÒÅÄÅÌÏÍ
lim
4x→0
sin
4x
2
4x
2
= lim
α→0
sin α
α
= 1,
ÐÏÌÕÞÁÅÍ
y
0
(x
0
) = lim
4x→0
4y(x
0
)
4x
= 1 · cos x
0
= cos x
0
.
2 §1. ðÒÏÉÚ×ÏÄÎÁÑ ÆÕÎËÃÉÉ 1 1 ÔÏ y(x0 ) = x0 É y(x0 + 4x) = x0 +4x , ÐÏÜÔÏÍÕ 1 1 4 y(x0) = y(x0 + 4x) − y(x0) = − = x0 + 4x x0 x0 − (x0 + 4x) −4x = = . x0(x0 + 4x) x0 (x0 + 4x) ïÔÓÀÄÁ, −4x 4y(x0 ) x0 (x0 +4x) 1 = =− . 4x 4x x0(x0 + 4x) óÌÅÄÏ×ÁÔÅÌØÎÏ, 0 4y(x0) 1 1 1 y (x0) = lim = lim − = − lim 2 = − 2. 4x→0 4x 4x→0 x0(x0 + 4x) 4x→0 x0 + x0 4 x x0 ôÁË ËÁË × ËÁÞÅÓÔ×Å x0 ÍÏÖÎÏ ×ÚÑÔØ ÌÀÂÏÅ ÞÉÓÌÏ ÎÅÒÁ×ÎÏÅ ÎÕÌÀ, ÔÏ ÄÌÑ ÌÀÂÏÇÏ ÞÉÓÌÁ x 6= 0 ÐÏÌÕÞÁÅÍ 0 0 1 1 y (x) = = − 2. x x 1 1 îÁÐÒÉÍÅÒ, y 0 (−2) = − (−2) 2 = −4. ðÒÉÍÅÒ 2. îÁÊÔÉ ÐÏ ÏÐÒÅÄÅÌÅÎÉÀ ÐÒÏÉÚ×ÏÄÎÕÀ ÆÕÎËÃÉÉ y = sin x. òÅÛÅÎÉÅ. úÁÆÉËÓÉÒÕÅÍ ÐÒÏÉÚ×ÏÌØÎÕÀ ÔÏÞËÕ x0. ôÁË ËÁË y(x) = sin x, ÔÏ y(x0 ) = sin x0 É y(x0 + 4x) = sin(x0 + 4x), ÐÏÜÔÏÍÕ 4y(x0) = y(x0 + 4x) − y(x0) = sin(x0 + 4x) − sin x0 . óÌÅÄÏ×ÁÔÅÌØÎÏ, 4y(x0 ) sin(x0 + 4x) − sin x0 = = 4x 4x 4x 4x 2 sin 2 cos x0 + 2 sin 4x 4x 2 = = 4x cos x0 + . 4x 2 2 ÷ÏÓÐÏÌØÚÏ×Á×ÛÉÓØ ÎÅÐÒÅÒÙ×ÎÏÓÔØÀ ÆÕÎËÃÉÉ sin x É ÐÅÒ×ÙÍ ÚÁÍÅÞÁÔÅÌØÎÙÍ ÐÒÅÄÅÌÏÍ sin 4x sin α lim 4x2 = lim = 1, 4x→0 α→0 α 2 ÐÏÌÕÞÁÅÍ 4y(x0) y 0 (x0) = lim = 1 · cos x0 = cos x0. 4x→0 4x