Основы измерений. Долгополов В.Т. - 23 стр.

UptoLike

Составители: 

Рубрика: 

bah[jZ`_ggmx gZ Jbk. 19 . Ihlj_[ey_fZy baf_jbl_evguf mkljhckl\hf fhsghklv jZ\gZ
P=I
2
R
i
. >_ckl\mxs__ agZq_gb_ lhdZ jZ\gh:
I= V
0
/((R
i
+R
0
)
2
+(X
i
+X
0
)
2
)
1/2
Khhl\_lkl\_ggh, fhsghklv, ihklmiZxsZy \ baf_jbl_evgh_ mkljhckl\h jZ\gZ:
P=R
i
V
0
2
/ ((R
i
+R
0
)
2
+(X
i
+X
0
)
2
)
WlZ fhsghklv fZdkbfZevgZ ijb X
i
= -X
0
b R
i
=R
0
. ?_ \_ebqbgZ khklZ\ey_l P
max
= V
0
2
/ 4R
0
.
Kh]eZkh\Zgb_ ih hlkmlkl\bx hljZ`_gby.
Wlhl \b^ kh]eZkh\Zgby ijbf_gy_lky ijb i_j_^Zq_ \ukhdhqZklhlguo kb]gZeh\ ih
^ebgguf ebgbyf beb dZ[_eyf (^ebgZ dZ[_ey [hevr_ beb jZ\gZ q_l\_jlb ^ebgu \hegu
i_j_^Z\Z_fh]h kb]gZeZ. Kf. Jbk.20 .)
Jbk. 20 .
HljZ`_gbc hl dhgph\ dZ[_ey g_ [m^_l, _keb Z
0
= Z
C
= Z
i
. >ey dZ[_ey [_a ihl_jv Z
C
=
(L/C)
1/2
. A^_kv L- bg^mdlb\ghklv _^bgbpu ^ebgu dZ[_ey, Z C_fdhklv _^bgbpu ^ebgu.
Ihe_agh agZlv lbibqgu_ bfi_^Zgku: dhZdkbZevguc dZ[_ev - 50 Hf, 75 Hf;
kdjmq_ggZy iZjZ ijh\h^h\ – 100-120 Hf, ijh\h^gbdb gZ i_qZlghc ieZl_ 50-150 Hf.
14. Rmfu b ihf_ob.
Ij_^klZ\bf k_[_, qlh gZ \oh^ baf_jbl_evghc kbkl_fu g_ ih^Zgh gbdZdh]h kb]gZeZ.
Wlh _s_ g_ hagZqZ_l, qlh gbdZdh]h kb]gZeZ g_ [m^_l b gZ \uoh^_: \oh^gh_ khijhlb\e_gb_
baf_jbl_evghc ko_fu (lZd`_ dZd b baf_jy_fuc h[t_dl) ijhba\h^yl l_ieh\hc rmf. Hg
\hagbdZ_l ba-aZ [jhmgh\kdh]h ^\b`_gby qZklbp \ f_oZgbq_kdbo kbkl_fZo, ba-aZ
nemdlmZpbc qbkeZ we_dljhgh\ \h \oh^ghf khijhlb\e_gbb b l.^. Rmf mkbeb\Z_lky
baf_jbl_evghc kbkl_fhc b i_j_^Z_lky gZ \uoh^. Kj_^g_d\Z^jZlbqgh_ agZq_gb_ l_ieh\h]h
rmfZ m bklhqgbdh\ gZijy`_gby b lhdZ jZ\gu, khhl\_lkl\_ggh:
V = (4kTR
'
f)
1/2
b I =(4 kT
'
f/R)
1/2
. Ijb\_^_f \u\h^ i_j\h]h ba wlbo \ujZ`_gbc (nhjfmeu
GZcd\bklZ).
Jbk.21 .
bah[jZ`_ggmx gZ Jbk. 19 . Ihlj_[ey_fZy baf_jbl_evguf mkljhckl\hf fhsghklv jZ\gZ
P=I2Ri. >_ckl\mxs__ agZq_gb_ lhdZ jZ\gh:
                             I= V0 /((Ri+R0)2+(Xi+X0)2)1/2
Khhl\_lkl\_ggh, fhsghklv, ihklmiZxsZy \ baf_jbl_evgh_ mkljhckl\h jZ\gZ:
                             P=RiV02/ ((Ri+R0)2+(Xi+X0)2)
WlZ fhsghklv fZdkbfZevgZ ijb Xi = -X0 b Ri =R0. ?_ \_ebqbgZ khklZ\ey_l Pmax = V02/ 4R0.

      Kh]eZkh\Zgb_ ih hlkmlkl\bx hljZ`_gby.
      Wlhl \b^ kh]eZkh\Zgby ijbf_gy_lky ijb i_j_^Zq_ \ukhdhqZklhlguo kb]gZeh\ ih
^ebgguf ebgbyf beb dZ[_eyf (^ebgZ dZ[_ey [hevr_ beb jZ\gZ q_l\_jlb ^ebgu \hegu
i_j_^Z\Z_fh]h kb]gZeZ. Kf. Jbk.20 .)




                                        Jbk. 20 .
HljZ`_gbc hl dhgph\ dZ[_ey g_ [m^_l, _keb Z0 = ZC = Zi. >ey dZ[_ey [_a ihl_jv ZC =
(L/C)1/2. A^_kv L- bg^mdlb\ghklv _^bgbpu ^ebgu dZ[_ey, Z C – _fdhklv _^bgbpu ^ebgu.
     Ihe_agh agZlv lbibqgu_ bfi_^Zgku:          dhZdkbZevguc dZ[_ev - 50 Hf, 75 Hf;
kdjmq_ggZy iZjZ ijh\h^h\ – 100-120 Hf, ijh\h^gbdb gZ i_qZlghc ieZl_ 50-150 Hf.

                               14. Rmfu b ihf_ob.
       Ij_^klZ\bf k_[_, qlh gZ \oh^ baf_jbl_evghc kbkl_fu g_ ih^Zgh gbdZdh]h kb]gZeZ.
Wlh _s_ g_ hagZqZ_l, qlh gbdZdh]h kb]gZeZ g_ [m^_l b gZ \uoh^_: \oh^gh_ khijhlb\e_gb_
baf_jbl_evghc ko_fu (lZd`_ dZd b baf_jy_fuc h[t_dl) ijhba\h^yl l_ieh\hc rmf. Hg
\hagbdZ_l ba-aZ [jhmgh\kdh]h ^\b`_gby qZklbp \ f_oZgbq_kdbo kbkl_fZo, ba-aZ
nemdlmZpbc qbkeZ we_dljhgh\ \h \oh^ghf khijhlb\e_gbb b l.^. Rmf mkbeb\Z_lky
baf_jbl_evghc kbkl_fhc b i_j_^Z_lky gZ \uoh^. Kj_^g_d\Z^jZlbqgh_ agZq_gb_ l_ieh\h]h
rmfZ m bklhqgbdh\ gZijy`_gby b lhdZ jZ\gu, khhl\_lkl\_ggh:
V = (4kTR'f)1/2 b I =(4 kT'f/R)1/2. Ijb\_^_f \u\h^ i_j\h]h ba wlbo \ujZ`_gbc (nhjfmeu
GZcd\bklZ).




                                       Jbk.21 .