Сборник методических указаний к выполнению лабораторных работ по курсу "Материаловедение". Часть 1. Егоров Ю.П - 32 стр.

UptoLike

В конечном итоге пластическая деформация представляет собой сдвиг
одной части кристалла относительно другой. Каков же механизм пластического
сдвига? Естественно предположить одновременное смещение всех атомов
одного слоя по отношению к атомам соседнего слоя по плоскости сдвига ММ
(рис. 1), так скользят бумажные листы в пачке бумаги при сдвиге ее верхней
части. Усилие, которое надо приложить для осуществления такого сдвига,
можно подсчитать и таким образом определить теоретическую прочность.
Такой расчет был сделан Я.И. Френкелем, и получилось, что для железа
прочность должна быть равна 1300 кгс/мм
2
, тогда как в действительности
предел прочности железа 15 кгс/мм
2
, т.е. в 100 раз меньше.
Объяснение реального механизма сдвиговых процессов дает теория
дислокаций особого рода линейных несовершенств (дефектов)
кристаллической решетки. Представления о дислокациях были введены в
металлофизику для того, чтобы объяснить несоответствие между наблюдаемой
и теоретической прочностью и описать атомный механизм скольжения при
пластической деформации кристаллов. Если на первых этапах развития этой
теории представления о дислокациях были предположительными, то затем
были получены прямые доказательства их существования, а в настоящее время
имеются многочисленные данные наблюдения дислокаций.
Наиболее простой и наглядный способ образования дислокаций в
кристалле сдвиг (рис. 2, а). Если сдвиг произошел только в части плоскости
скольжения и охватывает площадку ABCD, то граница AB между участком, где
скольжение уже произошло, и ненарушенным участком в плоскости
скольжения и будет дислокацией. Атомная плоскость, перпендикулярная к
плоскости скольжения и проходящая через AB, является как бы лишней и ее
называют экстраплоскостью, а дислокацию AB краевой дислокацией,
обозначаемой знаком . Возможны и другие виды дислокаций, например,
винтовая (рис. 3, а) или смешанная (рис. 4, а). Винтовая дислокация получила
свое название из-за того, что кристалл при этом можно считать состоящим из
одной атомной плоскости, закрученной по винтовой поверхности вокруг
дислокации AB (рис. 3, а). Нетрудно видеть, как движение дислокаций через
кристалл вызывает остаточную деформацию кристалла (рис. 2-4 б, в, г).
Перемещение дислокаций происходит по схеме, изображенной на рис. 5, из
которого видно, что при перемещении дислокации на одно межатомное
расстояние каждый атом экстраплоскости и плоскости в нижней части
кристалла перемещается на значительно меньшую величину. При поочередном,
эстафетном перемещении атомов на расстояния меньше межатомного,
дислокация скользит на большие расстояния через весь кристалл. Если при
одновременном сдвиге верхней части кристалла по отношению к нижней
необходимо преодолеть межатомные связи между всеми граничными атомами
по обе стороны от плоскости скольжения (см. рис. 1), то при перемещении
дислокации в соседнее положение разрываются межатомные связи только
между двумя цепочками атомов (рис. 5). Именно этим объясняется низкое
опытное значение кристаллического скалывающего напряжения.
ε = 0 % ε = 30 % ε = 60 %
31