Методические указания для практических занятий по общей и экспериментальной физике. Часть вторая. МКТ и термодинамика. Филимонова Л.В. - 59 стр.

UptoLike

Составители: 

- 59 -
Задача 4.7. Кислород, масса которого m=200 г, нагревают от температу-
ры t
1
=27 °C до t
2
=127 °C. Найдите изменение энтропии, если известно, что
начальное и конечное давления одинаковы и близки к атмосферному.
[52 Дж/К] (7, с. 54)
Указания по решению. В условии задачи не указан процесс, в результате
которого осуществляется переход газа из состояний 1 в состояние 2. По
свойству энтропии величина ΔS не зависит от вида процесса перехода.
Убедимся в этом, рассмотрев 2 пути перехо-
да и сравнив полученные при расчете значе-
ния ΔS.
1)
Пусть газ изобарно расширяется от Т
1
до
Т
2
при атмосферном давлении р
0
=10
5
Па
(рис. 23). Согласно задаче 4.6
1
2
ln)1
2
(
T
T
R
im
S
p
+=Δ
μ
.
2) Пусть газ переходит из состояния 1 в состояние 2 через промежуточное
состояние 1 так (рис. 24), что переход 1-1 есть изотермическое расшире-
ние, а переход 1-2 – изохорное нагревание до исходного давления р
0
.
Находим
=Δ
1
1
11
T
A
S
δ
, т.к. dU=0.
1
2
1
11
1
11
ln
V
V
R
m
T
RT
S
V
dVm
μ
μ
==Δ
.
Далее
1
2
2
1
21
ln
2
0
const
T
T
R
mi
T
dU
A
V
S
μ
δ
==
=
=
=Δ
.
Суммарное изменение энтропии
                                                     - 59 -


Задача №4.7. Кислород, масса которого m=200 г, нагревают от температу-
ры t1=27 °C до t2=127 °C. Найдите изменение энтропии, если известно, что
начальное и конечное давления одинаковы и близки к атмосферному.
[52 Дж/К] (7, с. 54)
Указания по решению. В условии задачи не указан процесс, в результате
которого осуществляется переход газа из состояний 1 в состояние 2. По
свойству энтропии величина ΔS не зависит от вида процесса перехода.
Убедимся в этом, рассмотрев 2 пути перехо-
да и сравнив полученные при расчете значе-
ния ΔS.
1) Пусть газ изобарно расширяется от Т1 до
Т2 при атмосферном давлении р0=105 Па
(рис. 23). Согласно задаче № 4.6
                       m i         T
              ΔS p =    ( + 1) R ln 2 .
                       μ 2         T1

2) Пусть газ переходит из состояния 1 в состояние 2 через промежуточное
состояние 1′ так (рис. 24), что переход 1-1′ есть изотермическое расшире-
ние, а переход 1′-2 – изохорное нагревание до исходного давления р0.
        Находим
                                 1′
                 ΔS1−1′ = ∫
                                      δA , т.к. dU=0.
                                 1    T

                  1′ m     RT1 dV                        V2
                       μ       V              m
          ΔS1−1′ = ∫                      =       R ln      .
                   1        T1                μ          V1

Далее
                V = const ⎤ 2 dU i m      T2
    ΔS1′− 2 = ⎡⎢           = ∫  =    R ln    .
               ⎣δA = 0 ⎥⎦ 1′ T    2μ      T1

Суммарное изменение энтропии