Лабораторный практикум по информатике. Гурьяшова Р.Н - 93 стр.

UptoLike

93
8
2 3,1 – 0,4556
9
2,4 – 2 1,1446
10
– 3 1,5 0,16103
11
– 2 1,85 31,7154
12
1,2 2,35 – 0,9182
13
2 – 3 3,3657
14
1,4 0,5 1,1209
15
– 2 1,5 11,8053
16
– 2 1 68,1193
17
1 2,7 243,73
18
– 3 2 0,4254
19
1,5 2 6,1465
20
1 2,5 2,1975
)sin(ln
)3,0sin2(ln
2sinln
2
baa
bZ
+
+
+=
π
o
b
a
a
b
ab
Z tgcos
tg6cos
)tg(cos
2
+
=
o
a
b
aZ
ln3cos
)ln(cos
3lncos
2
+
+
+=
o
π
3
tg2ln
3tgln
)tg(ln
2
π
+
= b
b
ba
Z
o
)sin(cos
)3sin(cos
sincos
22
222
22
aa
b
baZ
=
π
o
22
2
2
)ln(sin
)2ln3(sin
lnsin
ba
b
ab
Z ++
+
+
=
o
2
2
)tg(
tg
3tg
aeb
be
eZ
b
a
b
+
+
+=
o
2
3
)2(ln
ln
ln
b
a
eb
ea
eb
Z +
=
a
a
b
ea
e
eZ
+
+
+=
sin
5sin
)
3
(sin
22
o
π
2
3
)
3
cos(
2cos
4cos
π
+
=
b
a
e
be
e
Z
o
)3cos(ln
cos3ln
)cos(ln
2
o
+
+
+=
bb
a
baZ
22
2
2
)3ln
3
(sin
)ln3(sin
lnsin
++
+
+
=
π
ba
ba
Z
o
)sin(
5sin
)2sin(
2
abb
a
a
b
a
Z
+
+
+=
o
                                    (ln 2 + sin 0,3π ) 2
8 Z=       ln b + sin 2o −                                        2     3,1    – 0,4556
                                      a(ln a + sin b)
         (cos b − tg a ) 2                            a
9 Z =                      +           cos a − tg                 2,4   –2     1,1446
          cos 6 o − tg b                              b
                                    (cos π + ln b ) 2
10 Z =     cos a + ln 3 −                                         –3    1,5    0,16103
                                     cos 3 o + ln a

         (ln a − tg b ) 2                             π
11 Z =                          +     ln 2 b − tg                 –2    1,85   31,7154
           ln b − tg 3 o                              3

                                        (cos 2 b − sin 2 3o ) 2
12 Z =     cos 2 a − sin 2 b −                                    1,2   2,35   – 0,9182
                                        a(cos 2 π − sin 2 a )
           sin 2 b + ln a
13 Z =                      + (sin 2 a + ln b ) 2                 2     –3     3,3657
         b(sin 2 3o + ln 2)
        −b     o                   e 2 a + tg b
14 Z = e + tg 3 −                                                 1,4   0,5    1,1209
                                b − (e b + tg a) 2

         ln b − e − a
15 Z =                + (ln 2b − e b ) 2                          –2    1,5    11,8053
         ln a − e3

               π                    sin 5o + e a
16 Z = (sin         + e 2b ) 2 −                                  –2     1     68,1193
                3                   sin a + e −a

           e 3 − cos 4o                           π
17 Z =                       + (e b − cos ) 2                     1     2,7    243,73
           e   −a
                    − cos 2b             3

                     2                 ln 3 + cos a
18 Z = (ln a + cos b) −                                           –3     2     0,4254
                                    b(ln b + cos 3o )
            sin a + ln 2 b                    π
19 Z =               o      2
                                     + (sin       + ln 2 3) 2     1,5    2     6,1465
         a (sin 3 + ln b)                     3

            a                  a + sin 5o
20 Z = (      + sin 2a ) 2 −                                      1     2,5    2,1975
            b                b( b + sin a )




                                                          93