ВУЗ:
Составители:
Рубрика:
91
∞→CT
0
[67].
2) Изучают поглощение и отражение света жидкостями.
3) Рассчитывают
∞
ε
теоретически, зная молекулярные параметры исследуемого
объекта.
4) Для некоторых (неполярных) веществ выполняется соотношение Максвелла
2
n≅
∞
ε
что значительно упрощает расчеты.
5) Имея измеренные
ε
′
и
ε
′
′
на разных частотах, строят диаграмму Коула-Коула
и, интерполируя кривую на ось абсцисс, находят
∞
ε
.
Во всех перечисленных случаях экспериментальные методы имеют высокую
погрешность и некоторые недостатки, описанные в [67].
3.4. Методы, использующие волны в свободном пространстве
Рассмотренные выше методы широко применяются в сантиметровом диапазоне, но с
уменьшением длины волны до миллиметрового диапазона и, в особенности, на
коротковолновом участке миллиметрового диапазона распространены методы,
использующие волны в свободном пространстве. Теория метода,
экспериментальные системы подробно описаны в книге [235] и статьях [236—241]. В этих
методах для определения диэлектрической проницаемости используется оптическая
характеристика диэлектрика, т.е. комплексный показатель преломления:
jkn*n
−
=
, (3.66)
где п* - показатель преломления диэлектрика с потерями; k - коэффициент
поглощения.
Для немагнитных веществ (μ =1) скорость распространения электромагнитной
волны в среде связана с комплексной диэлектрической проницаемостью среды
выражением:
*
c
v
ε
= , (3.67)
где с - скорость света в пустоте. Следовательно,
*
v
c
*n
ε
== . (3.68)
Так как
ε
ε
ε
′′
−
′
= j*, из уравнений (3.49) и (3.51) имеем:
22
kn' −=
ε
,
nk" 2
=
ε
. (3.69)
Блок-схема измерительной установки для определения ε' и ε" этим методом
приведена на рис. 31.
T 0 C → ∞ [67].
2) Изучают поглощение и отражение света жидкостями.
3) Рассчитывают ε ∞ теоретически, зная молекулярные параметры исследуемого
объекта.
4) Для некоторых (неполярных) веществ выполняется соотношение Максвелла
ε ∞ ≅ n 2 что значительно упрощает расчеты.
5) Имея измеренные ε ′ и ε ′′ на разных частотах, строят диаграмму Коула-Коула
и, интерполируя кривую на ось абсцисс, находят ε ∞ .
Во всех перечисленных случаях экспериментальные методы имеют высокую
погрешность и некоторые недостатки, описанные в [67].
3.4. Методы, использующие волны в свободном пространстве
Рассмотренные выше методы широко применяются в сантиметровом диапазоне, но с
уменьшением длины волны до миллиметрового диапазона и, в особенности, на
коротковолновом участке миллиметрового диапазона распространены методы,
использующие волны в свободном пространстве. Теория метода,
экспериментальные системы подробно описаны в книге [235] и статьях [236—241]. В этих
методах для определения диэлектрической проницаемости используется оптическая
характеристика диэлектрика, т.е. комплексный показатель преломления:
n* = n − jk , (3.66)
где п* - показатель преломления диэлектрика с потерями; k - коэффициент
поглощения.
Для немагнитных веществ (μ =1) скорость распространения электромагнитной
волны в среде связана с комплексной диэлектрической проницаемостью среды
выражением:
c
v= , (3.67)
ε*
где с - скорость света в пустоте. Следовательно,
c
n* = = ε* . (3.68)
v
Так как ε * = ε ′ − jε ′′ , из уравнений (3.49) и (3.51) имеем:
ε ' = n 2 − k 2 , ε " = 2nk . (3.69)
Блок-схема измерительной установки для определения ε' и ε" этим методом
приведена на рис. 31.
91
Страницы
- « первая
- ‹ предыдущая
- …
- 89
- 90
- 91
- 92
- 93
- …
- следующая ›
- последняя »
