ВУЗ:
Составители:
Рубрика:
114
На 3-м этапе следу ет осуществлять ветвление из вершины
4, которой соответствует оптимальное значение
7
2
14)(
)4(
=xf .
Несмотря на то, чт о полученное значение f превышает нижнюю
границу целевой функции для целочисленного решения 14
4
=Θ ,
дальнейшее ветвление из вершины 4 не позво ляет улучшить
нижнюю границу
Θ
, поскольку 1)(
4)4(
<Θ−xf и все ко эффици-
енты целевой функции являются целыми числами. Таким обра-
зом, ветвление из вершины 4 в лучшем случае приведет к дру гому
целочисленному решению, для которого f = 14. Если поиск дру-
гих решений с тем же самым значением f не представляет интере-
са, то ветвление из вершины 4 осуществлять нецелесообразно и
вычисления можно завершить. При этом 14
4
=Θ=
∗
f ,
)2,4(
)3(
xx ==
∗
.
Ответ: .14),2,4( ==
∗∗
f x
Задачи
1. Решить методом ветвей и границ следующую целочис-
ленн ую задачу ЛП:
,max2)(
21
→+= xxxf
,1324
21
≤+ xx
0,0
21
≥≥ xx ,
1
x ,
2
x − целые.
2. Решить методом ветвей и границ следующую целочис-
ленн ую задачу ЛП:
,max22)(
21
→+= xxxf
1652
21
≤+ xx ,
3056
21
≤+ xx ,
0,0
21
≥≥ xx ,
1
x ,
2
x − целые.
Страницы
- « первая
- ‹ предыдущая
- …
- 112
- 113
- 114
- 115
- 116
- …
- следующая ›
- последняя »