ВУЗ:
Составители:
Рубрика:
72
Таким образом, через 384 дн. предприятие может вернуть кредит в банк. По сравне-
нию с предыдущим случаем (см. п. 2) предприятие вернет в банк деньги раньше на 424 - 384
= 40 дн.
При нормальном режиме работ критический путь составляет 200 дн., стоимость работ
= 265 тыс. р.
Критический путь уменьшен до 157 дн., минимальная стоимость работ составляет 265
+ 75 = 340 тыс. р. при максимальном режиме.
3.5 Минимизация сети
Задача минимизации сети состоит в нахождении ребер, соединяющих все
узлы сети и имеющих минимальную суммарную длину (рис. 3.17).
Рис. 3.17
На ребрах, соединяющих узлы 1, 2, 3, указаны длины. Узел 3 соединен с
узлами 1 и 2 минимальной длиной 4 + 6 = 10. Если соединить узлы 1 и 2, то
возникает цикл и получающаяся сеть не будет минимальный. Отсутствие цик-
лов в минимальной сети дало ей название «минимальное дерево – остов».
Алгоритм решения
Начнем с любого узла и соединим его с ближайшим узлом сети. Соеди-
ненные два узла образуют связное множество, а остальные – несвязное. Далее в
несвязном множестве выберем узел, который расположен ближе других к лю-
бому из узлов связного множества. Скорректируем связное и несвязное мно-
жества и будем повторять процесс до тех пор
, пока в связное множество не по-
падут все узлы сети. В случае одинаково удаленных узлов выберем любой из
них, что указывает на неоднозначность (альтернативность) «минимального де-
рева – остова».
Пример. Телевизионная фирма планирует создание кабельной сети для обслуживания
5 районов-новостроек. Числа на ребрах указывают длину кабеля (рис. 3.18). Узел 1 – телеви-
зионный центр. Отсутствие ребра между двумя узлами означает, что соединение соответст-
вующих новостроек либо связано с большими затратами, либо невозможно.
Найти такое соединение кабелем районов-новостроек, чтобы длина его была мини-
мальной.
РЕШЕНИЕ. Минимальная длина кабеля: 1 + 3 + 4 + 3 + 5 = 16 (рис. 2.19).
1
3
2
18
4
6
Страницы
- « первая
- ‹ предыдущая
- …
- 71
- 72
- 73
- 74
- 75
- …
- следующая ›
- последняя »
