Интегральное исчисление функции одной переменной. - 8 стр.

UptoLike

8 §1. îÅÏÐÒÅÄÅÌÅÎÎÙÊ ÉÎÔÅÇÒÁÌ. . .
ÞÁÓÔÑÍ ÉÍÅÅÔ ÂÏÌÅÅ ÏÇÒÁÎÉÞÅÎÎÕÀ ÏÂÌÁÓÔØ ÐÒÉÍÅÎÅÎÉÑ, ÞÅÍ ÚÁÍÅÎÁ ÐÅÒÅ-
ÍÅÎÎÏÊ. îÏ ÅÓÔØ ÃÅÌÙÅ ËÌÁÓÓÙ ÉÎÔÅÇÒÁÌÏ×, ÎÁÐÒÉÍÅÒ:
Z
x
k
ln
m
x dx,
Z
x
k
sin ax dx,
Z
x
k
cos ax dx,
Z
x
k
e
ax
dx,
Z
x
k
arcsin ax dx,
Z
x
k
arccos ax dx,
Z
x
k
arctg ax dx
É ÄÒÕÇÉÅ, ËÏÔÏÒÙÅ ×ÙÞÉÓÌÑÀÔÓÑ ÉÍÅÎÎÏ Ó ÐÏÍÏÝØÀ ÉÎÔÅÇÒÉÒÏ×ÁÎÉÑ ÐÏ ÞÁ-
ÓÔÑÍ.
I. ðÒÉ ÉÎÔÅÇÒÉÒÏ×ÁÎÉÉ ÆÕÎËÃÉÊ ×ÉÄÁ P
m
(x) sin ax, P
m
(x) cos ax, P
m
(x)e
ax
,
ÇÄÅ P
m
(x) ÐÒÏÉÚ×ÏÌØÎÙÊ ÍÎÏÇÏÞÌÅÎ ÓÔÅÐÅÎÉ m, × ËÁÞÅÓÔ×Å ÆÕÎËÃÉÉ u(x) ÉÚ
ÆÏÒÍÕÌÙ (1) ÂÅÒÅÔÓÑ ÍÎÏÇÏÞÌÅÎ P
m
(x), Á × ËÁÞÅÓÔ×Å v
0
(x) ÄÒÕÇÏÊ ÓÏÍÎÏÖÉ-
ÔÅÌØ.
ðÒÉÍÅÒ 15.
R
x · sin 3x dx. ðÕÓÔØ u(x) = x, v
0
(x) = sin 3x, ÔÏÇÄÁ
dv = sin 3x dx =
sin 3x
3
d3x =
1
3
d cos 3x.
Z
x · sin 3x dx =
1
3
Z
x d cos 3x =
1
3
x · cos 3x
Z
cos 3x dx
=
=
1
3
x cos 3x +
1
3
Z
cos 3x dx =
1
3
x cos 3x +
1
9
Z
cos 3x d3x =
=
1
3
x cos 3x +
1
9
sin 3x + C.
ðÒÉÍÅÒ 16.
R
xe
4x
dx. ðÕÓÔØ u(x) = x, v
0
(x) = e
4x
, ÔÏÇÄÁ
v
0
(x) dx = dv(x) = e
4x
dx =
e
4x
4
d(4x) =
1
4
de
4x
.
Z
xe
4x
dx =
1
4
Z
x de
4x
=
1
4
x · e
4x
Z
e
4x
dx
=
=
1
4
xe
4x
+
1
4
Z
e
4x
dx =
1
4
xe
4x
1
16
Z
e
4x
d(4x) =
=
1
4
xe
4x
1
16
e
4x
+ C.
ëÁË ÂÙÌÏ ÓËÁÚÁÎÏ ×ÙÛÅ, ÐÒÉ ×ÙÞÉÓÌÅÎÉÉ ÉÎÔÅÇÒÁÌÏ× ÆÏÒÍÕÌÁ ÉÎÔÅÇÒÉ-
ÒÏ×ÁÎÉÑ ÐÏ ÞÁÓÔÑÍ ÍÏÖÅÔ ÐÒÉÍÅÎÑÔØÓÑ ÎÅÓËÏÌØËÏ ÒÁÚ.
8                                                  §1. îÅÏÐÒÅÄÅÌÅÎÎÙÊ ÉÎÔÅÇÒÁÌ. . .

ÞÁÓÔÑÍ ÉÍÅÅÔ ÂÏÌÅÅ ÏÇÒÁÎÉÞÅÎÎÕÀ ÏÂÌÁÓÔØ ÐÒÉÍÅÎÅÎÉÑ, ÞÅÍ ÚÁÍÅÎÁ ÐÅÒÅ-
ÍÅÎÎÏÊ. îÏ ÅÓÔØ ÃÅÌÙÅ ËÌÁÓÓÙ ÉÎÔÅÇÒÁÌÏ×, ÎÁÐÒÉÍÅÒ:
          Z                     Z                 Z                 Z
               k   m                k                 k
              x ln x dx,      x sin ax dx,     x cos ax dx,      xk eax dx,
              Z                  Z                    Z
                  k                   k
                x arcsin ax dx,      x arccos ax dx,     xk arctg ax dx

É ÄÒÕÇÉÅ, ËÏÔÏÒÙÅ ×ÙÞÉÓÌÑÀÔÓÑ ÉÍÅÎÎÏ Ó ÐÏÍÏÝØÀ ÉÎÔÅÇÒÉÒÏ×ÁÎÉÑ ÐÏ ÞÁ-
ÓÔÑÍ.
   I. ðÒÉ ÉÎÔÅÇÒÉÒÏ×ÁÎÉÉ ÆÕÎËÃÉÊ ×ÉÄÁ Pm (x) sin ax, Pm (x) cos ax, Pm (x)eax,
ÇÄÅ Pm (x) ÐÒÏÉÚ×ÏÌØÎÙÊ ÍÎÏÇÏÞÌÅÎ ÓÔÅÐÅÎÉ m, × ËÁÞÅÓÔ×Å ÆÕÎËÃÉÉ u(x) ÉÚ
ÆÏÒÍÕÌÙ (1) ÂÅÒÅÔÓÑ ÍÎÏÇÏÞÌÅÎ Pm (x), Á × ËÁÞÅÓÔ×Å v 0 (x) ÄÒÕÇÏÊ ÓÏÍÎÏÖÉ-
ÔÅÌØ.
   ðÒÉÍÅÒ 15. x · sin 3x dx. ðÕÓÔØ u(x) = x, v 0 (x) = sin 3x, ÔÏÇÄÁ
                 R


                       sin 3x          1
    dv = sin 3x dx =          d3x = − d cos 3x.
                          3            3                                    
                             1                  1
       Z                       Z                                 Z
          x · sin 3x dx = −      x d cos 3x = −     x · cos 3x − cos 3x dx =
                             3                  3
                1            1                 1             1
                               Z                               Z
          = − x cos 3x +         cos 3x dx = − x cos 3x +         cos 3x d3x =
                3            3                 3             9
                                                          1            1
                                                     = − x cos 3x + sin 3x + C.
                                                          3            9

                           xe−4x dx. ðÕÓÔØ u(x) = x, v 0 (x) = e−4x , ÔÏÇÄÁ
                       R
     ðÒÉÍÅÒ 16.


     0                       −4x    e−4x              1
    v (x) dx = dv(x) = e dx = −          d(−4x) = − de−4x.
                                     4               4                
                            1                1
            Z                 Z                              Z
               xe−4x dx = −      x de−4x = −     x · e−4x − e−4x dx =
                            4                4
                1 −4x 1                    1 −4x       1
                            Z                             Z
                                −4x
            = − xe      +      e dx = − xe         −          e−4x d(−4x) =
                4         4                4          16
                                                            1          1 −4x
                                                      = − xe−4x −        e   + C.
                                                            4         16

  ëÁË ÂÙÌÏ ÓËÁÚÁÎÏ ×ÙÛÅ, ÐÒÉ ×ÙÞÉÓÌÅÎÉÉ ÉÎÔÅÇÒÁÌÏ× ÆÏÒÍÕÌÁ ÉÎÔÅÇÒÉ-
ÒÏ×ÁÎÉÑ ÐÏ ÞÁÓÔÑÍ ÍÏÖÅÔ ÐÒÉÍÅÎÑÔØÓÑ ÎÅÓËÏÌØËÏ ÒÁÚ.