ВУЗ:
Рубрика:
§1. îÅÏÐÒÅÄÅÌÅÎÎÙÊ ÉÎÔÅÇÒÁÌ. . . 9
ðÒÉÍÅÒ 17.
R
x
2
· cos 2x dx. ðÕÓÔØ u(x) = x
2
, v
0
(x) = cos 2x, ÔÏÇÄÁ
v
0
(x) dx = dv(x) = cos 2x dx =
1
2
cos 2x d2x =
1
2
d sin 2x.
Z
x
2
cos 2x dx =
1
2
Z
x
2
d sin 2x =
1
2
x
2
sin 2x −
Z
sin 2x dx
2
. (2)
ôÁË ËÁË dx
2
= 2x dx, ÔÏ × ÐÏÓÌÅÄÎÅÍ ÉÎÔÅÇÒÁÌÅ ÐÏÌÕÞÉÍ
Z
sin 2x dx
2
=
Z
(sin 2x) · 2x dx.
ðÏÌÁÇÁÑ u(x) = 2x, v
0
(x) = sin 2x; v
0
(x) dx = sin 2x dx =
1
2
sin 2x d2x =
= −
1
2
d cos 2x, ÉÍÅÅÍ
Z
(sin 2x) · 2x dx =
Z
2x ·
−
1
2
d cos 2x = −
Z
x d cos 2x =
= −
x cos 2x −
Z
cos 2x dx
= −x cos 2x +
1
2
Z
cos 2x d2x =
= −x cos 2x +
1
2
sin 2x + C.
ïËÏÎÞÁÔÅÌØÎÏ, ÐÏÄÓÔÁ×ÌÑÑ ÐÏÓÌÅÄÎÉÊ ÒÅÚÕÌØÔÁÔ × (2), ÐÏÌÕÞÉÍ
Z
x
2
cos 2x dx =
1
2
x
2
· sin 2x + x cos 2x −
1
2
sin 2x
+ C =
=
1
2
x
2
sin 2x +
1
2
x cos 2x −
1
4
sin 2x + C.
II. ðÒÉ ÉÎÔÅÇÒÉÒÏ×ÁÎÉÉ ÆÕÎËÃÉÊ ×ÉÄÁ: P
m
(x) arcsin ax, P
m
(x) arccos ax,
P
m
(x) arctg ax, P
m
(x) ln ax × ËÁÞÅÓÔ×Å v
0
(x) ×ÙÂÉÒÁÅÔÓÑ ÍÎÏÇÏÞÌÅÎ P
m
(x), Á
× ËÁÞÅÓÔ×Å u(x) ÏÓÔÁ×ÛÁÑÓÑ ÆÕÎËÃÉÑ.
ðÒÉÍÅÒ 18.
R
x ln x dx. ðÕÓÔØ u(x) = ln x, v
0
(x) = x, ÔÏÇÄÁ
v
0
(x) dx = x dx =
1
2
dx
2
.
Z
x ln x dx =
1
2
Z
ln x dx
2
=
1
2
x
2
ln x −
Z
x
2
d ln x
=
=
1
2
x
2
ln x −
Z
x
2
·
1
x
dx
=
1
2
x
2
ln x −
x
2
2
+ C =
=
x
2
ln x
2
−
x
2
4
+ C.
§1. îÅÏÐÒÅÄÅÌÅÎÎÙÊ ÉÎÔÅÇÒÁÌ. . . 9
ðÒÉÍÅÒ 17. x2 · cos 2x dx. ðÕÓÔØ u(x) = x2, v 0 (x) = cos 2x, ÔÏÇÄÁ
R
1 1
v 0 (x) dx = dv(x) = cos 2x dx = cos 2x d2x = d sin 2x.
2 Z2
1 1
Z Z
x2 cos 2x dx = x2 d sin 2x = x2 sin 2x − sin 2x dx2 . (2)
2 2
ôÁË ËÁË dx2 = 2x dx, ÔÏ × ÐÏÓÌÅÄÎÅÍ ÉÎÔÅÇÒÁÌÅ ÐÏÌÕÞÉÍ
Z Z
2
sin 2x dx = (sin 2x) · 2x dx.
ðÏÌÁÇÁÑ u(x) = 2x, v 0 (x) = sin 2x; v 0 (x) dx = sin 2x dx = 21 sin 2x d2x =
= − 21 d cos 2x, ÉÍÅÅÍ
1
Z Z Z
(sin 2x) · 2x dx = 2x · − d cos 2x = − x d cos 2x =
2
1
Z Z
= − x cos 2x − cos 2x dx = −x cos 2x + cos 2x d2x =
2
1
= −x cos 2x + sin 2x + C.
2
ïËÏÎÞÁÔÅÌØÎÏ, ÐÏÄÓÔÁ×ÌÑÑ ÐÏÓÌÅÄÎÉÊ ÒÅÚÕÌØÔÁÔ × (2), ÐÏÌÕÞÉÍ
1 1
Z
x2 cos 2x dx = x2 · sin 2x + x cos 2x − sin 2x + C =
2 2
1 1 1
= x2 sin 2x + x cos 2x − sin 2x + C.
2 2 4
II. ðÒÉ ÉÎÔÅÇÒÉÒÏ×ÁÎÉÉ ÆÕÎËÃÉÊ ×ÉÄÁ: Pm (x) arcsin ax, Pm (x) arccos ax,
Pm (x) arctg ax, Pm (x) ln ax × ËÁÞÅÓÔ×Å v 0 (x) ×ÙÂÉÒÁÅÔÓÑ ÍÎÏÇÏÞÌÅÎ Pm (x), Á
× ËÁÞÅÓÔ×Å u(x) ÏÓÔÁ×ÛÁÑÓÑ ÆÕÎËÃÉÑ.
ðÒÉÍÅÒ 18. x ln x dx. ðÕÓÔØ u(x) = ln x, v 0 (x) = x, ÔÏÇÄÁ
R
1
v 0(x) dx = x dx = dx2.
2
1 1
Z Z Z
2 2 2
x ln x dx = ln x dx = x ln x − x d ln x =
2 2
x2
1 2 1 1
Z
2 2
= x ln x − x · dx = x ln x − +C =
2 x 2 2
x2 ln x x2
= − + C.
2 4
Страницы
- « первая
- ‹ предыдущая
- …
- 7
- 8
- 9
- 10
- 11
- …
- следующая ›
- последняя »
