Симплекс-метод решения задачи линейного программирования. Исенбаева Е.Н. - 12 стр.

UptoLike

Составители: 

Рубрика: 

12
4. ВАРИАНТЫ ЗАДАНИЙ
Найти решение задачи линейного программирования симплекс-
методом.
1. Z = x
1
+ x
2
+ x
3
+ x
4
+ x
6
max
x
1
+ x
2
+ x
3
+ x
4
- x
5
- x
6
= 1 x
j
0,
x
2
+ x
3
- x
4
- x
5
- x
6
= 1 6,1j =
x
2
- x
6
= 2.
2. Z = x
1
+ x
3
+ x
5
+ x
6
max
x
1
+ 4x
2
+ x
3
+ 3x
4
- 2x
5
+ x
6
= 15 x
j
0,
x
1
+ 4x
2
- x
3
- x
4
+ x
6
= 5 6,1j =
2x
1
+ 6x
2
+ x
3
+ 4x
4
- 2x
5
+ x
6
= 22.
3. Z = x
1
- 2x
2
+ x
3
- 8x
4
+ x
5
+ x
6
max
x
1
+ 4x
2
+ x
3
+ 3x
4
- 2x
5
+ x
6
= 15 x
j
0,
x
1
+ 4x
2
- x
3
- x
4
+ x
6
= 5
6,1j =
2x
1
+ 6x
2
+ x
3
+ 4x
4
- 2x
5
+ x
6
= 22.
4. Z = x
1
+ x
3
+ x
6
max
x
1
+ x
2
+ x
3
+ x
4
- x
5
- x
6
= 1 x
j
0,
x
2
+ x
3
- x
4
- x
5
- x
6
= 1
6,1j =
x
2
- x
6
= 2.
5. Z = x
1
+ 2x
2
+ x
3
- 2x
4
+ x
5
- 2x
6
min
x
1
- x
2
+ x
3
- x
4
+ x
5
- x
6
= 7
2x
1
+ 3x
2
- 2x
3
- 3x
4
+ 2x
5
+ 3x
6
= 3
3x
1
+ 2x
2
- x
3
- 4x
4
+ 3x
5
+ 2x
6
= 10.
6. Z = x
1
- 4x
2
+ x
3
+ x
4
+ x
5
+x
6
min
- 2x
1
+ x
2
+ x
3
+ x
5
= 20
-x
1
- 2x
2
+ x
4
+ 3x
5
= 24
3x
1
- x
2
- 12x
5
+ x
6
= 18.
7. Z = 2x
1
- 6x
2
+ 3x
5
max
- 2x
1
+ x
2
+ x
3
+ x
5
= 20
- x
1
- 2x
2
+ x
4
+ 3x
5
= 24
3x
1
- x
2
- 12x
5
+ x
6
= 18.
8. Z = x
1
+ x
2
+ x
3
+ 2x
4
+ 3x
5
+ 2x
6
max
- 2x
1
+ x
2
+ x
3
+ x
5
= 20
- x
1
- 2x
2
+ x
4
+ 3x
5
= 24
3x
1
- x
2
- 12x
5
+ x
6
= 18.
4. ВАРИАНТЫ ЗАДАНИЙ

Найти решение задачи линейного программирования симплекс-
методом.
1. Z = x1 + x2 + x3 + x4       + x6 → max
       x1 + x2 + x3 + x4 - x5 - x6 = 1        xj ≥ 0,
            x2 + x3 - x4 - x5 - x6 = 1        j = 1,6
            x2                  - x6 = 2.
2. Z = x1       + x3          + x5 + x6 → max
       x1 + 4x2 + x3 + 3x4 - 2x5 + x6 = 15    xj ≥ 0,
       x1 + 4x2 - x3 - x4         + x6 = 5    j = 1,6
      2x1 + 6x2 + x3 + 4x4 - 2x5 + x6 = 22.

3. Z = x1 - 2x2 + x3 - 8x4 + x5 + x6 → max
       x1 + 4x2 + x3 + 3x4 - 2x5 + x6 = 15       xj ≥ 0,
       x1 + 4x2 - x3 - x4       + x6 = 5         j = 1,6
      2x1 + 6x2 + x3 + 4x4 - 2x5 + x6 = 22.

4. Z = x1     + x3              + x6 → max
       x1 + x2 + x3 + x4 - x5 - x6 = 1           xj ≥ 0,
           x2 + x3 - x4 - x5 - x6 = 1            j = 1,6
           x2                  - x6 = 2.

5. Z = x1 + 2x2 + x3 - 2x4 + x5 - 2x6 → min
       x1 - x2 + x3 - x4 + x5 - x6 = 7
      2x1 + 3x2 - 2x3 - 3x4 + 2x5 + 3x6 = 3
      3x1 + 2x2 - x3 - 4x4 + 3x5 + 2x6 = 10.

6.   Z = x1 - 4x2 + x3 + x4 + x5 +x6 → min
     - 2x1 + x2 + x3        + x5       = 20
       -x1 - 2x2      + x4 + 3x5       = 24
        3x1 - x2           - 12x5 + x6 = 18.

7.   Z = 2x1 - 6x2            + 3x5      → max
       - 2x1 + x2 + x3        + x5        = 20
       - x1 - 2x2     + x4   + 3x5       = 24
          3x1 - x2           - 12x5 + x6 = 18.

8.    Z = x1 + x2 + x3 + 2x4 + 3x5 + 2x6 → max
      - 2x1 + x2 + x3       + x5        = 20
        - x1 - 2x2    + x4 + 3x5        = 24
          3x1 - x2         - 12x5 + x6 = 18.


                                12