Математические основы защиты информации. Ишмухаметов Ш.Т - 132 стр.

UptoLike

Список литературы 133
[12] Cocks C. An identity based encryption scheme based on quadratic residues.
Cryptography and Coding, 2001.
[13] Cohen H. A course in computational algebraic number theory / H. Cohen.–
Springer–Verlag, Berlin, 1993, 545 p.
[14] Crandall R. The prime numbers: a computational perspertive / R. Crandall,
C. Pomerance.– sec.ed. Springer–Verlag, Berlin, 2005, 604 p.
[15] Dunham W. Euler : The Master of Us All. Mathematical Association of
America, 1999, 185 p.
[16] Edwards H.M. A normal form for elliptic curves./ H.M. Edwards.–Bull.
Amer. Math. Soc. 44 (2007), p. 393-422
[17] Elkenbracht-Huising M. An implementation of the Number Field Sieve /
M. Elkenbracht-Huising.– Experimental Mathematics, 1996, v.5, p. 231—-
253.
[18] Gardner M. A new kind of cipher that would take millions years to break /
M. Gardner.– Sci. Amer. 1977, p. 120–124.
[19] Granville A.Smooth numbers: Computational number theory and beyond/
A. Granville.– Proc. of MSRI workshop, 2004, 268–363
[20] Hackmann P. Elementary Number Theory / P. Hackmann.– HHH Publ,
2007, 411 p.
[21] Ishmukhametov S.T.On a number of products of two primes./ S.T. Ish-
mukhametov, R. Rubtsova.–Abstracts of International Conference dedicated
to 100-anniversary of V. V. Morozov, Kazan, 2011
[22] Joux A. A one round protocol for tripartie Diffie-Hellman. / A. Joux.– Al-
gorithmic Number Theory: 4-th International Symposium, ANT–IV, Lecture
Notes in Computer Science, v.1838(2000), Springer–Verlag, p. 385–393.
Список литературы                                                           133

[12] Cocks C. An identity based encryption scheme based on quadratic residues.
    Cryptography and Coding, 2001.

[13] Cohen H. A course in computational algebraic number theory / H. Cohen.–
    Springer–Verlag, Berlin, 1993, 545 p.

[14] Crandall R. The prime numbers: a computational perspertive / R. Crandall,
    C. Pomerance.– sec.ed. Springer–Verlag, Berlin, 2005, 604 p.

[15] Dunham W. Euler : The Master of Us All. Mathematical Association of
    America, 1999, 185 p.

[16] Edwards H.M. A normal form for elliptic curves./ H.M. Edwards.–Bull.
    Amer. Math. Soc. 44 (2007), p. 393-422

[17] Elkenbracht-Huising M. An implementation of the Number Field Sieve /
    M. Elkenbracht-Huising.– Experimental Mathematics, 1996, v.5, p. 231—-
    253.

[18] Gardner M. A new kind of cipher that would take millions years to break /
    M. Gardner.– Sci. Amer. 1977, p. 120–124.

[19] Granville A.Smooth numbers: Computational number theory and beyond /
    A. Granville.– Proc. of MSRI workshop, 2004, 268–363

[20] Hackmann P. Elementary Number Theory / P. Hackmann.– HHH Publ,
    2007, 411 p.

[21] Ishmukhametov S.T.On a number of products of two primes./ S.T. Ish-
    mukhametov, R. Rubtsova.–Abstracts of International Conference dedicated
    to 100-anniversary of V. V. Morozov, Kazan, 2011

[22] Joux A. A one round protocol for tripartie Diffie-Hellman. / A. Joux.– Al-
    gorithmic Number Theory: 4-th International Symposium, ANT–IV, Lecture
    Notes in Computer Science, v.1838(2000), Springer–Verlag, p. 385–393.