ВУЗ:
Составители:
Список литературы 133
[12] Cocks C. An identity based encryption scheme based on quadratic residues.
Cryptography and Coding, 2001.
[13] Cohen H. A course in computational algebraic number theory / H. Cohen.–
Springer–Verlag, Berlin, 1993, 545 p.
[14] Crandall R. The prime numbers: a computational perspertive / R. Crandall,
C. Pomerance.– sec.ed. Springer–Verlag, Berlin, 2005, 604 p.
[15] Dunham W. Euler : The Master of Us All. Mathematical Association of
America, 1999, 185 p.
[16] Edwards H.M. A normal form for elliptic curves./ H.M. Edwards.–Bull.
Amer. Math. Soc. 44 (2007), p. 393-422
[17] Elkenbracht-Huising M. An implementation of the Number Field Sieve /
M. Elkenbracht-Huising.– Experimental Mathematics, 1996, v.5, p. 231—-
253.
[18] Gardner M. A new kind of cipher that would take millions years to break /
M. Gardner.– Sci. Amer. 1977, p. 120–124.
[19] Granville A.Smooth numbers: Computational number theory and beyond/
A. Granville.– Proc. of MSRI workshop, 2004, 268–363
[20] Hackmann P. Elementary Number Theory / P. Hackmann.– HHH Publ,
2007, 411 p.
[21] Ishmukhametov S.T.On a number of products of two primes./ S.T. Ish-
mukhametov, R. Rubtsova.–Abstracts of International Conference dedicated
to 100-anniversary of V. V. Morozov, Kazan, 2011
[22] Joux A. A one round protocol for tripartie Diffie-Hellman. / A. Joux.– Al-
gorithmic Number Theory: 4-th International Symposium, ANT–IV, Lecture
Notes in Computer Science, v.1838(2000), Springer–Verlag, p. 385–393.
Список литературы 133 [12] Cocks C. An identity based encryption scheme based on quadratic residues. Cryptography and Coding, 2001. [13] Cohen H. A course in computational algebraic number theory / H. Cohen.– Springer–Verlag, Berlin, 1993, 545 p. [14] Crandall R. The prime numbers: a computational perspertive / R. Crandall, C. Pomerance.– sec.ed. Springer–Verlag, Berlin, 2005, 604 p. [15] Dunham W. Euler : The Master of Us All. Mathematical Association of America, 1999, 185 p. [16] Edwards H.M. A normal form for elliptic curves./ H.M. Edwards.–Bull. Amer. Math. Soc. 44 (2007), p. 393-422 [17] Elkenbracht-Huising M. An implementation of the Number Field Sieve / M. Elkenbracht-Huising.– Experimental Mathematics, 1996, v.5, p. 231—- 253. [18] Gardner M. A new kind of cipher that would take millions years to break / M. Gardner.– Sci. Amer. 1977, p. 120–124. [19] Granville A.Smooth numbers: Computational number theory and beyond / A. Granville.– Proc. of MSRI workshop, 2004, 268–363 [20] Hackmann P. Elementary Number Theory / P. Hackmann.– HHH Publ, 2007, 411 p. [21] Ishmukhametov S.T.On a number of products of two primes./ S.T. Ish- mukhametov, R. Rubtsova.–Abstracts of International Conference dedicated to 100-anniversary of V. V. Morozov, Kazan, 2011 [22] Joux A. A one round protocol for tripartie Diffie-Hellman. / A. Joux.– Al- gorithmic Number Theory: 4-th International Symposium, ANT–IV, Lecture Notes in Computer Science, v.1838(2000), Springer–Verlag, p. 385–393.
Страницы
- « первая
- ‹ предыдущая
- …
- 130
- 131
- 132
- 133
- 134
- …
- следующая ›
- последняя »