Математические основы защиты информации. Ишмухаметов Ш.Т - 133 стр.

UptoLike

Список литературы 134
[23] Joux A. The Weil and Tate Pairings as Building Blocks for Public Key Cryp-
tosystems. Proceedings of the 5th International Symposium on Algorithmic
Number Theory, Springer-Verlag London, 2002, p.20–32
[24] Lenstra H.W. Factoring integers with elliptic curves / H.W. Lenstra.–
Ann.Math. v.126 (1987), p. 649–674.
[25] Lenstra A. The Development of the Number Field Sieve / A. Lenstra and
H. Lenstra (eds.).– Lect.Not.in Math.1554, Springer–Verlag, Berlin, 1993,
139 p.
[26] Longa P.Fast Point Arithmetic for Elliptic Curve Cryptography/ P. Longa.–
Presentation at CliCC, University of Ottawa, Ottawa, Canada, 2006.
[27] Longa P. ECC Point Arithmetic Formulae (EPAF): Jacobian coordinates/
P. Longa, C. Gebotus. In Proc. Workshop on Cryptographic Hardware and
Embedded Systems (CHES 2010), 2010.
[28] Menezes A. Reducing Elliptic Curve Logarithms to a Finite Field /
A. Menezes, T. Okamoto, S. Vanstone.– IEEE Trans. Info. Theory, v.39,
1993, p. 1639–1646.
[29] Menezes A. Elliptic Curve Public Key Cryptosystems / A. Menezes.– 1993,
144 p.
[30] Montgomery P.L. Speeding the Pollard and Elliptic Curve Methods of Fac-
torization./P.L. Montgomery.– Mathematics of Computation, v.48, iss.177,
1987, p.234–264.
[31] Montgomery P.L. An FFT-extension of the Elliptic Curve Method of Facti-
rization / P.L. Montgomery.– Doctoral Dissertation, 1992, Univ.Calif. USA,
118 p.
[32] Pollard J.M. Theorems on factorization and primality testing / J.M. Pollard.
Proc.Cambridge Phil.Society. 1974, v.76, p. 521-578.
Список литературы                                                            134

[23] Joux A. The Weil and Tate Pairings as Building Blocks for Public Key Cryp-
    tosystems. Proceedings of the 5th International Symposium on Algorithmic
    Number Theory, Springer-Verlag London, 2002, p.20–32

[24] Lenstra H.W. Factoring integers with elliptic curves / H.W. Lenstra.–
    Ann.Math. v.126 (1987), p. 649–674.

[25] Lenstra A. The Development of the Number Field Sieve / A. Lenstra and
    H. Lenstra (eds.).– Lect.Not.in Math.1554, Springer–Verlag, Berlin, 1993,
    139 p.

[26] Longa P.Fast Point Arithmetic for Elliptic Curve Cryptography/ P. Longa.–
    Presentation at CliCC, University of Ottawa, Ottawa, Canada, 2006.

[27] Longa P. ECC Point Arithmetic Formulae (EPAF): Jacobian coordinates/
    P. Longa, C. Gebotus. In Proc. Workshop on Cryptographic Hardware and
    Embedded Systems (CHES 2010), 2010.

[28] Menezes A.    Reducing Elliptic Curve Logarithms to a Finite Field /
    A. Menezes, T. Okamoto, S. Vanstone.– IEEE Trans. Info. Theory, v.39,
    1993, p. 1639–1646.

[29] Menezes A. Elliptic Curve Public Key Cryptosystems / A. Menezes.– 1993,
    144 p.

[30] Montgomery P.L. Speeding the Pollard and Elliptic Curve Methods of Fac-
    torization./P.L. Montgomery.– Mathematics of Computation, v.48, iss.177,
    1987, p.234–264.

[31] Montgomery P.L. An FFT-extension of the Elliptic Curve Method of Facti-
    rization / P.L. Montgomery.– Doctoral Dissertation, 1992, Univ.Calif. USA,
    118 p.

[32] Pollard J.M. Theorems on factorization and primality testing / J.M. Pollard.
    – Proc.Cambridge Phil.Society. 1974, v.76, p. 521-578.