Методы факторизации натуральных чисел. Ишмухаметов Ш.Т. - 195 стр.

UptoLike

Составители: 

Список литературы 196
[44] Pollard J.M. Factoring with cubic numbers./ J.M. Pollard. in Lenstra et
alt[1993], p. 4-10.
[45] Pollard J.M. The lattice sieve./ J.M. Pollard. in Lenstra et alt[1993], p. 43-
49.
[46] Pomerance C. Tale of Two Sieves/ C. Pomerance. Notices of AMS, 1996,
P. 1473–1485.
[47] Pomerance C. Smooth Numbers and the Quadratic Sieve / C. Pomerance.
MSRI publications, v.44 2008, p. 69–82.
[48] Pomerance C. A pipeline architecture for factoring large integers with the
quadratic sieve algorithm./ C. Pomerance, J. Smith, R. Tuler. SIAM J.
Comput., 17:387–403, 1988. Special issue on cryptography.
[49] Ribenboim P. The New Book Of Prime Number Records,/ P. Ribenboim.
3rd ed. Springer, 1996, 541 p.
[50] Schoof R. Four primarity testing algorithms./ R. Schoof. in Sur-
veys in Algorithmic Number Theory, ed.J.B.Buchler, P.Stevenhagen,
Math.Sci.Res.Inst.Publ. 44, Cambridge Univ.Press, New York, 2008, p.101-
126.
[51] Shoup V. A Computational Introduction to Number Theory and Alge-
bra/ V. Shoup. – Cambridge University Press, Sec.Edition, 2005, 600 p.
http://shoup.net/ntb/
[52] Stewart I. Algebraic Number Theory and Fermat’s Last Theorem / I. Stewart,
D. Tall. Third Ed., Massachusetts:AK Peters, 2002, 314 p.
[53] Venturi D. Lecture Notes on Algorithmic Number Theory./ D. Venturi.
Springer-Verlag, New-York, Berlin, 2009, 217 p.
[54] Washington L. Elliptic Curves Number Theory and Cryptography /L. Wash-
ington. – Series Discrete Mathematics and Its Applications, Chapman &
Hall/CRC,second ed. 2008, 524 p.
Список литературы                                                                196

[44] Pollard J.M. Factoring with cubic numbers./ J.M. Pollard. – in Lenstra et
    alt[1993], p. 4-10.

[45] Pollard J.M. The lattice sieve./ J.M. Pollard. – in Lenstra et alt[1993], p. 43-
    49.

[46] Pomerance C. Tale of Two Sieves/ C. Pomerance. – Notices of AMS, 1996,
    P. 1473–1485.

[47] Pomerance C. Smooth Numbers and the Quadratic Sieve / C. Pomerance. –
    MSRI publications, v.44 – 2008, p. 69–82.

[48] Pomerance C. A pipeline architecture for factoring large integers with the
    quadratic sieve algorithm./ C. Pomerance, J. Smith, R. Tuler. – SIAM J.
    Comput., 17:387–403, 1988. Special issue on cryptography.

[49] Ribenboim P. The New Book Of Prime Number Records,/ P. Ribenboim. –
    3rd ed. Springer, 1996, 541 p.

[50] Schoof R. Four primarity testing algorithms./ R. Schoof. – in Sur-
    veys in Algorithmic Number Theory, ed.J.B.Buchler, P.Stevenhagen,
    Math.Sci.Res.Inst.Publ. 44, Cambridge Univ.Press, New York, 2008, p.101-
    126.

[51] Shoup V. A Computational Introduction to Number Theory and Alge-
    bra/ V. Shoup. – Cambridge University Press, Sec.Edition, 2005, 600 p.
    http://shoup.net/ntb/

[52] Stewart I. Algebraic Number Theory and Fermat’s Last Theorem / I. Stewart,
    D. Tall. – Third Ed., Massachusetts:AK Peters, 2002, 314 p.

[53] Venturi D. Lecture Notes on Algorithmic Number Theory./ D. Venturi. –
    Springer-Verlag, New-York, Berlin, 2009, 217 p.

[54] Washington L. Elliptic Curves Number Theory and Cryptography /L. Wash-
    ington. – Series Discrete Mathematics and Its Applications, Chapman &
    Hall/CRC,second ed. 2008, 524 p.