ВУЗ:
Составители:
Рубрика:
F (x) X
f(x)
f(x) F
0
(x) = f(x)
dF (x) = f(x) dx
X F (x)
f(x) F (x) + C
C f(x)
f(x)
X
F (x) + C C
f(x) f(x) dx
Z
f(x) dx,
f(x)dx
f(x)
Z
x
2
dx =
x
3
3
+ C,
µ
x
3
3
+ C
¶
0
=
3x
2
3
+ 0 = x
2
.
d
Z
f(x) dx = f(x) dx,
µ
Z
f(x) dx
¶
0
= f(x).
Z
F
0
(x) dx =
Z
dF (x) = F (x) + C.
d
Z
F (x)
1 ÏÐÎÑÒÅÉØÈÅ ÏÐÈÅÌÛ ÂÛ×ÈÑËÅÍÈß
Îïðåäåëåíèå. Ôóíêöèÿ F (x) â äàííîì ïðîìåæóòêå X íà-
çûâàåòñÿ ïåðâîîáðàçíîé ôóíêöèè f (x) èëè íåîïðåäåëåííûì èí-
òåãðàëîì îò f (x), åñëè âî âñåì ïðîìåæóòêå F 0 (x) = f (x) èëè
dF (x) = f (x) dx.
Òåîðåìà. Åñëè â íåêîòîðîì ïðîìåæóòêå X ôóíêöèÿ F (x)
åñòü ïåðâîîáðàçíàÿ äëÿ ôóíêöèè f (x), òî è ôóíêöèÿ F (x) + C , ãäå
C ëþáàÿ ïîñòîÿííàÿ, òàêæå áóäåò ïåðâîîáðàçíîé äëÿ f (x), è
íàîáîðîò, êàæäàÿ ôóíêöèÿ, ïåðâîîáðàçíàÿ äëÿ f (x) â íåêîòîðîì
ïðîìåæóòêå X , ìîæåò áûòü ïðåäñòàâëåíà â ýòîé ôîðìå.
 ñèëó òåîðåìû, âûðàæåíèå F (x) + C , ãäå C ïðîèçâîëüíàÿ
ïîñòîÿííàÿ, ïðåäñòàâëÿåò ñîáîé îáùèé âèä ôóíêöèè, êîòîðàÿ èìååò
ïðîèçâîäíóþ f (x) èëè äèôôåðåíöèàë f (x) dx è îáîçíà÷àåòñÿ ñèì-
âîëîì Z
f (x) dx,
â êîòîðîì íåÿâíûì îáðàçîì óæå çàêëþ÷åíà ïðîèçâîëüíàÿ ïîñòîÿí-
íàÿ. Âûðàæåíèå f (x)dx íàçûâàþò ïîäèíòåãðàëüíûì âûðàæåíèåì,
à ôóíêöèþ f (x) ïîäèíòåãðàëüíîé ôóíêöèåé.
Îïåðàöèÿ èíòåãðèðîâàíèÿ ïðîâåðÿåòñÿ îáðàòíûì äåéñòâèåì
äèôôåðåíöèðîâàíèåì. Íàïðèìåð,
Z µ ¶0
2 x3 x3 3x2
x dx = + C, ïîñêîëüêó +C = + 0 = x2 .
3 3 3
Câîéñòâà èíòåãðàëà
Z µZ ¶0
1) d f (x) dx = f (x) dx, èëè f (x) dx = f (x).
Z Z
0
2) F (x) dx = dF (x) = F (x) + C.
Z
(çíàêè äèôôåðåíöèàëà d è èíòåãðàëà âçàèìíî ñîêðàùàþòñÿ,
òîëüêî âî âòîðîì ñëó÷àå ê F (x) íóæíî ïðèáàâèòü ïðîèçâîëüíóþ
ïîñòîÿííóþ).
3
