Методические указания к практическим занятиям по курсам "Волоконно-оптические датчики" и "Оптические методы в информатике". Кирин И.Г. - 5 стр.

UptoLike

Составители: 

Рубрика: 

5
1.13.Предположим, что плотность оптической мощности,
распространяющейся по волокну, распределена равномерно по
селению сердцевины, вследствие чего вводимая через разъем в
следующий отрезок волокна мощность зависит только от площади
перекрытия сердцевины соединяемых волокон. В
рассматриваемом разъеме между сердцевинами соединяемых
волокон диаметром d имеет сдвиг х. Показать, что доля
передаваемой через разъемное соединение мощности,
распространяющейся в волокне, определяется выражением
{}
(/ )cos(/) (/)( / )
/
21
12
π
−−xd xd x d
212
1.14.Запишите нормализованные частоты, при которых двенадцать
мод самых низших порядков, распространяющихся в ступенчатых
волокнах, испытывают отсечку.
1.15.Показатели преломления сердцевины и оболочки двух
конкретных волокон соответственно равны 1,465 и 1,460.
Диаметры их сердцевин равны 50 и 10 мкм. Вычислить для
каждого из волокон длины волны, соответствующие частотам
отсечки мод самых низших порядков.
1.16.Определить число мод М, которые будут распространяться в
двух волокнах, характеристики которых приведены в задаче 1.15;
при условии, что они возбуждаются излучением источников с
длиной волны 1,55 и 0,85 мкм. Учесть двух кратное вырождение
каждой моды LP
0m
и четырехкратное вырождение каждой моды
LP
km
, при k
0. Для ответа на этот вопрос, а также при решении
задачи 1.17 воспользоваться таблицами корней функции Бесселя.
1.17.Построить график зависимости числа мод распространения от
нормализованной частоты в диапазоне ее значений 0<V<12.5.
1.18.Сравнить нормализованные частоты V
c
ниже которых
распространение света в волокне ограничивается единственной
модой, для волокон со следующими видами профиль показателя
преломления: а) ступенчатый профиль (
α
=∞ ); б)
параболический профиль (
α
= 2); в) треугольный профиль (
α
= 1).
1.19.Конкретное волокно имеет оболочку из чистого кварца, а его
сердцевина легирована германием с максимальной концентрацией
5
                                                             5




1.13.Предположим,    что    плотность    оптической   мощности,
   распространяющейся по волокну, распределена равномерно по
   селению сердцевины, вследствие чего вводимая через разъем в
   следующий отрезок волокна мощность зависит только от площади
   перекрытия    сердцевины       соединяемых     волокон.    В
   рассматриваемом разъеме между сердцевинами соединяемых
   волокон диаметром d имеет сдвиг х. Показать, что доля
   передаваемой   через    разъемное    соединение    мощности,
   распространяющейся в волокне, определяется выражением

        {
(2 / π ) cos −1 ( x / d ) − ( x / d )(1 − x 2 / d 2 ) 1/ 2   }
1.14.Запишите нормализованные частоты, при которых двенадцать
   мод самых низших порядков, распространяющихся в ступенчатых
   волокнах, испытывают отсечку.

1.15.Показатели преломления сердцевины и оболочки двух
   конкретных волокон соответственно равны 1,465 и 1,460.
   Диаметры их сердцевин равны 50 и 10 мкм. Вычислить для
   каждого из волокон длины волны, соответствующие частотам
   отсечки мод самых низших порядков.

1.16.Определить число мод М, которые будут распространяться в
   двух волокнах, характеристики которых приведены в задаче 1.15;
   при условии, что они возбуждаются излучением источников с
   длиной волны 1,55 и 0,85 мкм. Учесть двух кратное вырождение
   каждой моды LP0m и четырехкратное вырождение каждой моды
   LPkm, при k ≠ 0. Для ответа на этот вопрос, а также при решении
   задачи 1.17 воспользоваться таблицами корней функции Бесселя.

1.17.Построить график зависимости числа мод распространения от
   нормализованной частоты в диапазоне ее значений 0