Задачи по квантовой механике. Часть 2. Корнев А.С. - 44 стр.

UptoLike

Составители: 

E
n
=
1
2
Z
2
n
2
e
2
a
0
,
a
0
=
}
2
µe
2
a
0
= 0.529
N
nl
=
µ
2Z
na
0
3
/
2
1
(2l + 1)!
s
(n + l)!
2n(n l 1)!
1
F
1
n = 1, 2, . . .
l
n l
l = 0, 1, . . . , n1
l m =
0, ±1, . . . , ±1 (2l + 1)
E
n
g
n
=
n1
X
l=0
(2l + 1) = n
2
.
m
n l nl
l
1s n = 1 l = 0 E
n
n = 1 1s
                                                                                                 11

4!#N%!8EF() *  2 ]  +  A

                                                                               En = −
                                                                                                    1 Z 2 e2
                                                                                                             ,
                                                                                                                                                                                          9 7 ?
                                                                                                    2 n2 a 0

+       a0 =
                         }2
                         µe2
                                           N !#"Q>*%! 9 - 2 ]-"                                           a0 = 0.529
                                                                                                                                                                            ?

                                                              µ              ¶ 3/2                              s
                                                                   2Z                         1                           (n + l)!
                                            Nnl =
                                                                   na0                    (2l + 1)!                    2n(n − l − 1)!

&(%"X2 9Y! 7 ;EFQW-/T*L-K,. 7 ? F ; #-EF*+ !  2 %!#+; 2  +- .%  EF6*!#) "O2.
     9 7 0/?   )\;-%E < +  ` 9 !  7 ;O-/T &n 7 ? n = 1, 2, . . .  H 6_ "%6 ! -7*C,",O )(9 7 ? ^ ) *  2 ] +  ;#- 2                                                                                c  !2
  -."%(]  "%E 4!8-%` E > k; E F|< 7
   b "%FEF/3  ;,N66-.% "%6 \!8- l 9  !8-Q  E 
/3  ? N !8--  !#; X&("%Q4"*-%!8"+L;- 2 4WX 6-.E 8
 ; X/-  8 KVR 8 HJGIHJG 4WB K < E > 4?5 F R >f:= F25 P 7
          M  @BDgU5fB R€G 4I< E=EDG \ n !8- l
           (
;  ,) *  2 l = 0, 1, . . . , n − 1
   9<;% ^  ; @BDgU5fB R€G 4I< E=EDG \
        6+ _"% !8- m =
l
                        ^ *7 7 (2l + 1) ) *  ? 7
  b " N)   ^ "6%!#.aEF/3#
0, ±1, . . . , ±1
  2 % 2 E 
                                        n



             gn =
                           n−1
                           X
                                        (2l + 1) = n2 .
                                                                                       9 7 Z?
                                                                                     ‚&ƒU„Y#W‡†o
                            l=0
              @ ;" 9 7 ? +  ) EF  ! 2
U ON + %!8" 7 h(!8-  +  %Q N*!8" 7 4 + 6% c 5T   + 
     !#1 8 *- ) _] +  ]  + 2 - 2  ! 2 F G :lg GMi 5 H 8 |> E BQP
 % Q 7
             U /6-.EF -EF &("X49 7 O0/? ^ "6" T-(NEF.PPX 6-.
  % ;- ^ )*! 2  3 + + T"%+ !8- m 7 4 [8"O
   ) 1 c! 2 + -E  n N66-.E  l "%E  ! -  ; ! 8 V nl ^
    ;'- 2 l /!8;-.) %6.N%" EFQ4!#; "%!#"%;*!#"Q`!#-B7
      b " ^ 1s !#%!# 2  ) * 3!#%!# 2 ,! n = 1 l = 0 >/7 :7M(%!8"-." En
        6-.; n = 1 ^ %!8E  2 - 2  ! 2 1s !#%!# 2 7