ВУЗ:
Составители:
σ
in
(pA) = 2π
Z
bdb(1 − e
−σ
in
AT (b)
).
T (b) =
Z
dzρ(x, y, z), b = (x, y).
ρ(r) =
ρ
0
1 + e
(r−R
A
)/d
.
σ
in
(pA)
d
2
P
A
(b)
d
2
b
= (1 − e
−σ
in
AT (b)
).
(1 −e
−σ
in
AT (b)
)
e
−σ
in
AT (b)
b (1 − e
−σ
in
AT (b)
)
AT (b)
ν
p
ν
(b) = C
A
ν
[σ
in
T (b)]
ν
(1 − σ
in
T (b))
A−ν
.
A
X
ν=1
p
ν
(b) = 1 −[1 − σ
in
T (b)]
A
|
A>>1
≈ (1 − e
−σ
in
AT (b)
).
ν
”
“ N
A
coll
hN
A
coll
(b)i =
σ
in
AT (b)
(1 − e
−σ
in
AT (b)
)
.
Çäåñü â çíàìåíàòåëå ñòîèò ïîëíîå ñå÷åíèå íåóïðóãîãî âçàè-
ìîäåéñòâèÿ ïðîòîíà ñ ÿäðîì
Z
σin(pA) = 2π bdb(1 − e−σin AT (b) ). (21)
Ôóíêöèÿ ÿäåðíîé òîëùèíû, ââåäåííàÿ â ìîäåëè ëàóáåðà
[126℄, Z
T (b) = dzρ(x, y, z), b = (x, y). (22)
çàâèñèò îò ïëîòíîñòè ÿäðà, îáû÷íî çàäàâàåìîé äëÿ òÿæåëûõ
ÿäåð â îðìå Ôåðìè-ïëîòíîñòè
ρ0
ρ(r) = . (23)
1 + e(r−RA )/d
Ïåðåïèøåì îðìóëó (20) â âèäå
d2PA (b)
σin(pA) 2
= (1 − e−σin AT (b) ). (24)
db
è ïîÿñíèì èçè÷åñêèé ñìûñë âûðàæåíèÿ (1 − e−σin AT (b) ). Çäåñü
e−σin AT (b) âåðîÿòíîñòü ïðîòîíó ïðîëåòåòü ñ ïðèöåëüíûì ïà-
ðàìåòðîì b áåç âçàèìîäåéñòâèÿ, (1 − e−σin AT (b) ) âåðîÿòíîñòü
ïðîëåòåòü, âçàèìîäåéñòâóÿ ñ òîëùèíîé ÿäðà AT (b).
Ïîëåçíî ââåñòè âåðîÿòíîñòü ν íåóïðóãèõ âçàèìîäåéñòâèé íóê-
ëîíà ïðè ïðîõîæäåíèè òîëùèíû ÿäðà
pν (b) = CνA[σinT (b)]ν (1 − σinT (b))A−ν . (25)
Ñóììà ïî âñåì íåóïðóãèì ñòîëêíîâåíèÿì ïðèâîäèò ê âûðà-
æåíèþ (24)
A
pν (b) = 1 − [1 − σinT (b)]A |A>>1≈ (1 − e−σin AT (b) ). (26)
X
ν=1
Çíàÿ âåðîÿòíîñòü ν âçàèìîäåéñòâèé (25), ïîëó÷èì ñðåäíåå
÷èñëî íåóïðóãèõ ñòîëêíîâåíèé íóêëîíà ñ ÿäðîì À ( ÷èñëî áè-
”
íàðíûõ ñòîëêíîâåíèé “ ) Ncoll
A
ïðè çàäàííîì ïðèöåëüíîì ïàðà-
ìåòðå
A σinAT (b)
hNcoll (b)i = . (27)
(1 − e−σin AT (b) )
83
Страницы
- « первая
- ‹ предыдущая
- …
- 82
- 83
- 84
- 85
- 86
- …
- следующая ›
- последняя »
