Рефрактометрическое определение концентрации водных растворов. Котова Д.Л - 2 стр.

UptoLike

2
J_njZdlhf_ljbq_kdbc f_lh^ hij_^_e_gby dhgp_gljZpbb jZkl\hj_gguo \_s_kl\ rbjhdh
bkihevam_lky \ jZaebqguo hljZkeyo gZmdb b l_ogbdb Hg hlebqZ_lky hlghkbl_evghc ijhklhlhc
lj_[m_l fZeh \j_f_gb b ihwlhfm hq_gv m^h[_g ijb ijh\_^_gbb bkke_^h\Zgbc k\yaZgguo k
[hevrbf dhebq_kl\hf wdki_jbf_glh\ih hij_^_e_gbx dhgp_gljZpbc jZkl\hj_gguo \_s_kl\
gZijZ\e_gguogZbamq_gb_jZaebqguodbg_lbq_kdboaZdhghf_jghkl_c]^_\i_j\mxhq_j_^v\Z`_g
oZjZdl_jbaf_g_gbydhgp_gljZpbb\h\j_f_gbZg___Z[khexlgu_agZq_gby
< ihke_^gb_ ]h^u gZdZn_^jZoZgZeblbq_kdhcb g_hj]Zgbq_kdhc obfbb \_^mlky jZ[hlu ih
bamq_gbx hkh[_gghkl_c \h^guo jZkl\hjh\ ijb gbadbo l_fi_jZlmjZo BamqZxlky ijhp_kku
djbklZeebaZpbbbieZ\e_gbyev^Z\jZaebqguo\h^gh
-
khe_\uokbkl_fZoZlZd`_\^jm]bo\h^guo
kbkl_fZokh^_j`ZsbogZijbf_jZfbg hdbkehlub bgu_dhfihg_gluBkke_^m_lkyjZkij_^_e_gb_
dhgp_gljZpbb jZkl\hj_gguo \_s_kl\ ijb njZdpbhgghc djbklZeebaZpbb b ieZ\e_gbb ev^Z qlh
lj_[m_l hij_^_e_gby dhgp_gljZpbb \ [hevrhf dh ebq_kl\_ jZaguo njZdpbc < lZdbo jZ[hlZo
j_njZdlhf_ljbq_kdbc f_lh^ ijZdlbq_kdb g_aZf_gbf Djhf_ lh]h ^_lZevgh_ bkke_^h\Zgb_
baf_g_gby ihdZaZl_ey ij_ehfe_gby \ \h^guo jZkl\hjZo ^Z_l bgl_j_kgmx bgnhjfZpbx h[
hkh[_gghklyo kljh_gby jZaebqguo dhfihg_glh\ jZkl\hjZ b bo \aZbfh^_ckl\bb ijb jZaebqguo
mkeh\byo
GZ[Za_wlbojZ[hl\gZkl hys__\j_fyihemq_gup_ggu_gZmqgu_bijZdlbq_kdb_j_amevlZlu
b h^gh\j_f_ggh j_]meyjgh \uihegyxlky dmjkh\u_ [ZdZeZ\jkdb_ ^biehfgu_ jZ[hlu
fZ]bkl_jkdb_ b dZg^b^Zlkdb_ ^bkk_jlZpbb Wlb jZ[hlu kem`Zl gZmqgh
-
f_lh^bq_kdhc hkgh\hc
ih^]hlh\db klm^_glh\ gZ jZaguo wlZiZo bo h[mq_gby b fh]ml [ulv djhf_ obfbb rbjhdh
bkihevah\Zgu\jZ[hlZoih[bheh]bbnbabd_f_^bpbg_bl^
P_evx gZklhys_]h ba^Zgby y\ey_lky h[h[s_gb_ rbjhdh]h djm]Z gh\uo gZmqguo b
ijZdlbq_kdbof_lh^h\ b j_amevlZlh\ k p_evx bo kbkl_fZlbaZpbb b [he__rbjhdh]h\g_^j_gby \
mq_[gh
-
gZmqgucijhp_kk\mgb\_jkbl_l_
J_njZdlhf_ljbq_kdbcf_lh^ hkgh\Zg gZ baf_j_gbb ihdZaZl_ey ij_ehfe_gbyQ
bkke_^m_fh]h\_s_kl\Z
Ijb iZ^_gbb emqZ k\_lZ gZ ]jZgbpm jZa^_eZ ^\mo ijhajZqguo kj_^ijhbkoh^bl _]h
ij_ehfe_gb_
[1]
 GZijZ\e_gb_ emqZ \h \lhjhc kj_^_ baf_gy_lky \ khhl\_lkl\bb k aZdhghf
ij_ehfe_gby
β
α
sin
sin
=
n (1)
n
hlghkbl_evgucihdZaZl_evij_ehfe_gby\lhjhckj_^uihhlghr_gbxdi_j\hc
Hlghkbl_evguf ihdZaZl_e_f ij_ehfe_gby gZau\Z_lkyhlghr_gb_ kbgmkZ m]eZ iZ^_gbyemqZ
k\_lZdkbgmkmm]eZ_]hij_ehfe_gby
IhdZaZl_evij_ehfe_gbyaZ\bkblhlijbjh^u\_s_kl\Z^ebgu\heguk\_lZl_fi_jZlmju
AZ\bkbfhklv ihdZaZl_ey ij_ehfe_gby hl ^ebgu \hegu iZ^Zxs_]h k\_lZ gZau\Z_lky
^bki_jkb_c H[uqgh f_jhc ^bki_jkbb kqblZxl jZaghklv ihdZaZl_e_c ij_ehfe_gby ijb ^\mo
^ebgZo\heg
AZ\bkbfhklv ihdZaZl_ey ij_ehfe_gby hl ijbjh^u \_s_kl\Z oZjZdl_jbam_lky \_ebqbghc
fhe_dmeyjghcj_njZdpbb
R)
ρ
M
n
n
R
2
1
2
2
=
(2)
n -
ihdZaZl_ev ij_ehfe_gby
F -
fhe_dmeyjgZy fZkkZ\_s_kl\Z
ρ
-
hlghkbl_evgZy iehlghklv
\_s_kl\Z
>ey jZa[Z\e_gguojZkl\hjh\ aZ\bkbfhklv ihdZaZl_ey ij_ehfe_gby hl dhgp_gljZpbb
hibku\Z_lkymjZ\g_gb_f
                                                    2

     J_njZdlhf_ljbq_kdbc f_lh^ hij_^_e_gby dhgp_gljZpbb jZkl\hj_gguo \_s_kl\ rbjhdh
bkihevam_lky \ jZaebqguo hljZkeyo gZmdb b l_ogbdb Hg hlebqZ_lky hlghkbl_evghc ijhklhlhc
lj_[m_l fZeh \j_f_gb b ihwlhfm hq_gv m^h[_g ijb ijh\_^_gbb bkke_^h\Zgbc k\yaZgguo k
[hevrbf dhebq_kl\hf wdki_jbf_glh\  ih hij_^_e_gbx dhgp_gljZpbc jZkl\hj_gguo \_s_kl\
gZijZ\e_gguogZbamq_gb_jZaebqguodbg_lbq_kdboaZdhghf_jghkl_c]^_\i_j\mxhq_j_^v\Z`_g
oZjZdl_jbaf_g_gbydhgp_gljZpbb\h\j_f_gbZg___Z[khexlgu_agZq_gby
     < ihke_^gb_ ]h^u gZ dZn_^jZo ZgZeblbq_kdhc b g_hj]Zgbq_kdhc obfbb \_^mlky jZ[hlu ih
bamq_gbx hkh[_gghkl_c \h^guo jZkl\hjh\ ijb gbadbo l_fi_jZlmjZo BamqZxlky ijhp_kku
djbklZeebaZpbbbieZ\e_gbyev^Z\jZaebqguo\h^gh-khe_\uokbkl_fZoZlZd`_\^jm]bo\h^guo
kbkl_fZokh^_j`ZsbogZijbf_jZfbghdbkehlubbgu_dhfihg_gluBkke_^m_lkyjZkij_^_e_gb_
dhgp_gljZpbb jZkl\hj_gguo \_s_kl\ ijb njZdpbhgghc djbklZeebaZpbb b ieZ\e_gbb ev^Z qlh
lj_[m_l hij_^_e_gby dhgp_gljZpbb \ [hevrhf dhebq_kl\_ jZaguo njZdpbc < lZdbo jZ[hlZo
j_njZdlhf_ljbq_kdbc f_lh^ ijZdlbq_kdb g_aZf_gbf Djhf_ lh]h ^_lZevgh_ bkke_^h\Zgb_
baf_g_gby ihdZaZl_ey ij_ehfe_gby \ \h^guo jZkl\hjZo ^Z_l bgl_j_kgmx bgnhjfZpbx h[
hkh[_gghklyo kljh_gby jZaebqguo dhfihg_glh\ jZkl\hjZ b bo \aZbfh^_ckl\bb ijb jZaebqguo
mkeh\byo
     GZ[Za_wlbojZ[hl\gZklhys__\j_fyihemq_gup_ggu_gZmqgu_bijZdlbq_kdb_j_amevlZlu
b h^gh\j_f_ggh j_]meyjgh \uihegyxlky dmjkh\u_ [ZdZeZ\jkdb_ ^biehfgu_ jZ[hlu
fZ]bkl_jkdb_ b dZg^b^Zlkdb_ ^bkk_jlZpbb Wlb jZ[hlu kem`Zl gZmqgh-f_lh^bq_kdhc hkgh\hc
ih^]hlh\db klm^_glh\ gZ jZaguo wlZiZo bo h[mq_gby b fh]ml [ulv djhf_ obfbb rbjhdh
bkihevah\Zgu\jZ[hlZoih[bheh]bbnbabd_f_^bpbg_bl^
     P_evx gZklhys_]h ba^Zgby y\ey_lky h[h[s_gb_ rbjhdh]h djm]Z gh\uo gZmqguo b
ijZdlbq_kdbo f_lh^h\ b j_amevlZlh\ k p_evx bo kbkl_fZlbaZpbb b [he__ rbjhdh]h \g_^j_gby \
mq_[gh-gZmqgucijhp_kk\mgb\_jkbl_l_
     J_njZdlhf_ljbq_kdbc  f_lh^ hkgh\Zg gZ baf_j_gbb ihdZaZl_ey ij_ehfe_gby Q 
bkke_^m_fh]h\_s_kl\Z
     Ijb iZ^_gbb emqZ k\_lZ gZ ]jZgbpm jZa^_eZ ^\mo ijhajZqguo kj_^  ijhbkoh^bl _]h
ij_ehfe_gb_ [1] GZijZ\e_gb_ emqZ \h \lhjhc kj_^_ baf_gy_lky \ khhl\_lkl\bb k aZdhghf
ij_ehfe_gby

              sin α
     nhlg =                                  (1)
              sin β

      nhlg –hlghkbl_evgucihdZaZl_evij_ehfe_gby\lhjhckj_^uihhlghr_gbxdi_j\hc
      Hlghkbl_evguf ihdZaZl_e_f ij_ehfe_gby gZau\Z_lky hlghr_gb_ kbgmkZ m]eZ iZ^_gby emqZ
k\_lZdkbgmkmm]eZ_]hij_ehfe_gby
      IhdZaZl_evij_ehfe_gbyaZ\bkblhlijbjh^u\_s_kl\Z^ebgu\heguk\_lZl_fi_jZlmju
      AZ\bkbfhklv ihdZaZl_ey ij_ehfe_gby hl ^ebgu \hegu iZ^Zxs_]h k\_lZ gZau\Z_lky
^bki_jkb_c H[uqgh f_jhc ^bki_jkbb kqblZxl jZaghklv ihdZaZl_e_c ij_ehfe_gby ijb ^\mo
^ebgZo\heg
      AZ\bkbfhklv ihdZaZl_ey ij_ehfe_gby hl ijbjh^u \_s_kl\Z oZjZdl_jbam_lky \_ebqbghc
fhe_dmeyjghcj_njZdpbb R)

        n2 − 1 M
      R= 2                                   (2)
        n −2 ρ

     n - ihdZaZl_ev ij_ehfe_gby F - fhe_dmeyjgZy fZkkZ \_s_kl\Z ρ-hlghkbl_evgZy iehlghklv
\_s_kl\Z
     >ey jZa[Z\e_gguo  jZkl\hjh\ aZ\bkbfhklv ihdZaZl_ey ij_ehfe_gby hl dhgp_gljZpbb
hibku\Z_lkymjZ\g_gb_f