Введение в Maple и рассмотрение задач теоретической механики. Эксаревская М.Е - 33 стр.

UptoLike

33
телоD := polygon([point1, point2, point3, point4],
linestyle=1, thickness=1, color=gray);
pointB := [s*cos(psi), s*sin(psi)];
h := 1.5;
point1 := [pointB[1] + h*cos(psi+5*Pi/6),
pointB[2] + h*sin(psi+5*Pi/6)];
point2 := [pointB[1] + h*cos(psi+Pi/6),
pointB[2] + h*sin(psi+Pi/6)];
point3 := [pointB[1] + h*cos(psi-Pi/6),
pointB[2] + h*sin(psi-Pi/6)];
point4 := [pointB[1] + h*cos(psi-5*Pi/6),
pointB[2] + h*sin(psi-5*Pi/6)];
телоB := polygon([point1, point2, point3, point4],
linestyle=1, thickness=1);
display(pos(psi, s, t1),
телоD, телоB,
disk(pointB, h/3, color=red));
end proc:
> N_frames := 200:
for i from 0 to N_frames do
tau := Pi/N_frames*i;
p[i] := pos2(phi(tau), S(tau), Pi);
end do:
> plots[display](seq(p[i], I = 0 .. 200), insequence=true,
scaling=constrained);
На рисунке изображена траектория точки в неподвижных координатах при
t
от 0 до π .
> pos(phi(1/8),S(1/8),3/16);
'phi'=evalf(convert(phi(1/8), degrees));
'S'=S(1/8);
    телоD := polygon([point1, point2, point3, point4],
                     linestyle=1, thickness=1, color=gray);
    pointB := [s*cos(psi), s*sin(psi)];
    h := 1.5;
    point1 := [pointB[1] + h*cos(psi+5*Pi/6),
               pointB[2] + h*sin(psi+5*Pi/6)];
    point2 := [pointB[1] + h*cos(psi+Pi/6),
               pointB[2] + h*sin(psi+Pi/6)];
    point3 := [pointB[1] + h*cos(psi-Pi/6),
               pointB[2] + h*sin(psi-Pi/6)];
    point4 := [pointB[1] + h*cos(psi-5*Pi/6),
               pointB[2] + h*sin(psi-5*Pi/6)];
    телоB := polygon([point1, point2, point3, point4],
                     linestyle=1, thickness=1);
    display(pos(psi, s, t1),
                   телоD, телоB,
                   disk(pointB, h/3, color=red));
  end proc:
> N_frames := 200:
  for i from 0 to N_frames do
    tau := Pi/N_frames*i;
    p[i] := pos2(phi(tau), S(tau), Pi);
  end do:
> plots[display](seq(p[i], I = 0 .. 200), insequence=true,
                 scaling=constrained);




На рисунке изображена траектория точки в неподвижных координатах при
t от 0 до π .
> pos(phi(1/8),S(1/8),3/16);
  'phi'=evalf(convert(phi(1/8), degrees));
  'S'=S(1/8);




                                 33