Спектральный и временной анализ импульсных и периодических сигналов. Кузнецов Ю.В - 94 стр.

UptoLike

Составители: 

94
Приложение 1
ТАБЛИЦА СИГНАЛОВ И ИХ СПЕКТРОВ
Сигнал s(t) Спектр сигнала C( f )
t
0
2
τ
2
τ
A
() ()
tAts
τ
rect=
f
0
τ
A
() ( )
τπτ
fAfC sinc=
τ
1
τ
1
t
0
α
1
A
() ()
tuAts
t
=
α
e
f
0
σ
21
A
()
f
A
fC
πα
2+
=
σ
21
()
fC
()
fCarg
2
π
t
0
σ
3
A
()
2
2
2
e
σ
t
Ats
=
σ
3
f
0
σ
21
πσ
2A
()
()
2
2
e2
σπ
πσ
f
AfC
=
σ
21
t
0
A
() ( )
tfAts
0
2cos
π
=
0
T
f
0
()
2A
() ()(){
}
00
2
ffff
A
fC ++=
δδ
0
f
0
f
()
2A
t
0
A
() ( )
tfAts
0
2sin
π
=
00
1 fT =
f
0
()
2jA
() ()(){}
00
2
ffff
jA
fC
+=
δδ
()
2jA
00
1 Tf =
0
f
t
0
()
A
() ()
tAts
δ
=
f
0
A
()
AfC =
t
0
)(A
() ( )
−∞=
=
n
nTtAts
δ
T 2T -T -2T
t
0
()
−∞=
=
k
T
n
f
T
A
fS
δ
T1 T2T1T2
T
A
                                                                                                              Приложение 1
             ТАБЛИЦА СИГНАЛОВ И ИХ СПЕКТРОВ
                    Сигнал s(t)                                               Спектр сигнала C( f )
                              s(t ) = A ⋅ rect τ (t )                                            C ( f ) = Aτ ⋅ sinc(π f τ )
                                                                                        Aτ
                         A
                                                                                    1                 1
                                                                                −
                                                                                    τ                 τ
                                                     t                                                                    f
           −τ 2           0            τ 2                                                   0
                                                                                                                      A
                  s(t ) = A ⋅ e −α ⋅t ⋅ u (t )                                                    C( f ) =
                                                                                             A               α + 2π f
            A                                                                 arg C ( f )
                                                                                                           C( f )
                                                                                π 2
                                                                                                                      f
                                                          t
                                                                             − 1 2σ          0            1 2σ
                0 1α

                                                                                        C ( f ) = Aσ 2π ⋅ e −2⋅(π f σ )
                                                          t2                                                                      2
                                                     −
                               s(t ) = A ⋅ e             2σ 2

                         A                                             Aσ 2π


                                                         t                                                    f
            3σ             0        3σ                              − 1 2σ          0             1 2σ
                         s(t ) = A ⋅ cos(2π f 0t )                                          A
                   A                                                        C( f ) =          ⋅ {δ ( f + f 0 ) + δ ( f − f 0 )}
                                                                                            2
                                             t                             ( A 2)                  ( A 2)
                        0
                        T0                                                                                        f
                                                                    − f0            0                f0
                          s(t ) = A ⋅ sin (2π f 0t )                                     jA
                                                                           C( f ) =         ⋅ {δ ( f + f 0 ) − δ ( f − f 0 )}
                   A                                                                     2
                                                 t                      ( jA 2)
                         0
                                                                                             f 0 = 1 T0           f
                       T0 = 1 f 0
                                                                    − f0            0
                                                                                                       (− jA 2)
                                  s(t ) = A ⋅ δ (t )                                                  C( f ) = A
                       ( A)                                                                      A
                                                          t                                                                   f
                              0                                                                   0
                                             ∞
                                                                                                           A ∞       n
                             s(t ) = A ⋅     ∑ δ (t − nT )                                   S( f ) =       ⋅ ∑ δ f − 
                                                                                                           T k =−∞   T
                  (A)
                                           n =−∞                                  A
                                                                                  
                                                                                 T 
                                                                t                                                             t
     -2T    -T           0           T       2T                     − 2 T −1 T           0            1T      2T
94