Логика. Множества. Вероятность. Лексаченко В.А. - 32 стр.

UptoLike

Составители: 

Opredelenie 3.4 (Tavtologii v isqislenii predikatov). Predi-
kat
A nazyvaets todestvenno istinnym v koneqnom pred-
metnom mnoestve M , esli tablica istinnosti togo predi-
kata soderit tol~ko
1
. Predikat
A
nazyvaets tavtologie$i
(simvoliqeski
|
= A
)
, esli on vlets todestvenno istinnym
v lbom koneqnom predmetnom mnoestve.
Pri koneqno$i predmetno$i oblasti formuly isqisleni pre-
dikatov otliqats ot formul isqisleni vyskazyvani$i tol~ko
tem, qto v nih prisutstvut diznkcii i konnkcii vi-
da
W
n
i
=1
a
i
,
V
n
i
=1
a
i
, v kotorye perehodt formuly, soderawie
kvantory suwestvovani i obwnosti. Pri dokazatel~stve tav-
tologi$i, soderawih takie diznkcii i konnkcii s pro-
izvol~nymi natural~nymi n, mono vospol~zovat~s principom
matematiqesko$i indukcii.
Teorema 3.1 (Nekotorye tavtologii isqisleni predikatov).
Pri proizvol~nyh predikatah A
(x)
, B(x)
, soderawih svobodnye
vhodeni x; C(x, y)
, soderawem svobodnye vhodeni x
i y;
P
, ne soderawem svobodno
x, vypolnts sootnoxeni:
1) |= (x)(A(
x)
B(
x))
(
x)
A(
x
)
(
x
)B
(x) ,
2) |= (x)(
A(x
) B(x))
(
x)A(x)
(
x)B(x)
,
3)
|= (
x
)A
(x
)
(
x
)
B(
x) (
x
)(
A(x)
B(
x
)) ,
4)
|= (x)(
A
(
x
)
B(
x))
(
x)
A(x
)
(x)
B
(
x
)
,
5)
|= (
x)A
(
x)
(
x)
A
(x) ,
6) |
=
(
x
)
A
(x
)
(
x)A(
x
)
,
7) |
= (
x
)P
P ,
8)
|= (
x
)
P P ,
9) |= (
x)(
P
A
(
x
))
P
(
x
)A(x
)
,
10) |
= (
x
)(P
A
(x))
P
(
x)A
(x
)
,
11) |= (P (
x)
A
(
x
))
(
x
)(P
A
(x)) ,
12) |= ((
x)
A(
x)
P
)
(
x
)(
A(
x) P
)
,
13) |= (
x)A
(x
)
(
x)B
(
x
)
(
x)(
y)(A(
x
)
B(
y
))
,
14)
|= (
x
)
A(
x)
(
x
)B(x)
(
x
)(y
)(A
(
x)
B
(y))
,
15)
|
= (
x
)(
y
)C
(
x, y
) (
y
)(x
)
C(x, y
) ,
16) |
= (
x
)(
y
)
C(
x, y
)
(y)(x
)
C(
x, y
)
,
17) |
= (y)(
x
)
C(x, y)
(
x
)(
y)
C
(x, y)
,
18) esli
|
= A(
x) B
(x
)
,
to |
= (x
)
A
(x
)
(
x
)B(x
)
,
19)
esli |
=
A(x)
B(x
) , to |
= (
x
)A
(
x) (
x)B
(x) ,
20) esli |=
A
(x
)
B
(x)
, to
|= (x)A
(x) (
x)
B(x) ,
21)
esli
|= A(x
)
B
(
x) ,
to |
= (
x
)A
(x)
(x)B
(
x
)
.
D o k a z a t e l ~ s t v o . Dokaem tol~ko sootnoxeni 3, 18, 19.
32