Составители:
Рубрика:
M
k
(x
k
−x
k−1
) M
0
k
(ex−x
k−1
)+M
00
k
(x
k
−ex)
M
0
k
= sup
x∈J
0
k
©
f(x)
ª
M
00
k
= sup
x∈J
00
k
©
f(x)
ª
U(f, P ) − U(f, P
1
) = M
k
(x
k
− x
k−1
) − (M
00
k
(x
k
− ex) + M
0
k
(ex − x
k−1
)) =
= M
k
((x
k
− ex) + (ex −x
k−1
)) − M
00
k
(x
k
− ex) −M
0
k
(ex − x
k−1
) =
= (M
k
− M
00
k
) · (x
k
− ex) + (M
k
− M
0
k
) · (ex − x
k−1
).
J
0
k
J
00
k
J
k
M
0
k
≤ M
k
M
00
k
≤ M
k
U(f, P ) − U(f, P
1
) ≥ 0 U(f, P
1
) ≤ U(f, P ).
L(f, P
1
) ≥ L(f, P ). ¥
P
1
P
2
L(f, P
1
) ≤ U(f, P
2
).
P
1
= P
2
P
1
6= P
2
P
P
1
P
2
L(f, P
1
) ≤ L(f, P ), U(f, P ) ≤ U(f, P
2
).
L(f, P ) ≤ U(f, P ) L(f, P
1
) ≤ U(f, P
2
). ¥
[a, b]
J
1
= [a, b]
m(b − a) M(b − a)
m = inf
x∈[a,b]
©
f(x)
ª
M = sup
x
∈
[
a,b
]
©
f(x)
ª
m = M
[m(b − a), M( b − a)]
L(f) = sup
©
L(f, P )
ª
U(f) = inf
©
U(f, P )
ª
.
[m(b − a), M(b − a)]
[m(b − a), M(b − a)]
Страницы
- « первая
- ‹ предыдущая
- …
- 146
- 147
- 148
- 149
- 150
- …
- следующая ›
- последняя »
