Составители:
Рубрика:
(A
2n
)
A
2n
= (a
1
− a
2
) + . . . + (a
2n−1
− a
2n
) = A
2n−2
+ (a
2n−1
− a
2n
).
a
2n−1
− a
2n
> 0 A
2n
> A
2n−2
.
A
2n
= a
1
− (a
2
− a
3
) − . . . − (a
2n−2
− a
2n−1
) − a
2n
.
A
2n
< a
1
.
(A
2n
)
A = lim A
2n
. lim a
2n+1
= 0.
lim A
2n+1
= lim(A
2n
+ a
2n+1
) = lim A
2n
+ lim a
2n+1
= lim A
2n
= A.
lim A
2n
= lim A
2n+1
= A.
A
lim A
n
= A
A − A
n
= (−1)
n+2
a
n+1
+ (−1)
n+3
a
n+2
+ . . . = (−1)
n+2
(a
n+1
− a
n+2
+ . . .).
a
n+1
− a
n+2
+ a
n+3
− a
n+4
+ . . .
(a
n+1
− a
n+2
) + (a
n+3
− a
n+4
) + . . . + (a
n+2m−1
− a
n+2m
) > 0,
(a
n+1
− a
n+2
) + (a
n+3
− a
n+4
) + . . . + (a
n+2m−1
− a
n+2m
) + a
n+2m+1
> 0;
a
n+1
a
n+1
− (a
n+2
− a
n+3
) − . . . − a
n+2m
< a
n+1
,
a
n+1
− (a
n+2
− a
n+3
) − . . . − (a
n+2m
− a
n+2m+1
) < a
n+1
|A − A
n
| = a
n+1
− a
n+2
+ a
n+3
− a
n+4
+ . . . < a
n+1
¥
+∞
P
n=1
(−1)
n+1
n
lim
1
n
= 0
1
n + 1
<
1
n
.
Страницы
- « первая
- ‹ предыдущая
- …
- 52
- 53
- 54
- 55
- 56
- …
- следующая ›
- последняя »
