ВУЗ:
Составители:
Рубрика:
Находим доверительную границу НСП результата измерений )(P
Θ
,
согласно РМГ 29 – 99:
∑
=
Θ±=Θ
N
i
i
Р
1
)( , (1)
где
i
Θ
— граница -й составляющей неисключенной систематической
погрешности при
≤ 3, здесь – число слагаемых, состоящих из пределов
допускаемых основных и дополнительных погрешностей СИ, рабочих
эталонов и т. д.
i
N N
2
.
2
.
2
)()()(3,1)(
эталонрабМетСИ
Р ∆+∆+∆×=Θ , (2)
при
4 – составляющих НСП. ≥N
Находим среднее арифметическое от наблюдений:
n
x
x
N
i
i
∑
=
=
1
, (3)
где
– результат i-го единичного измерения;
i
x
x – среднее арифметическое значение измеряемой величины;
n – число наблюдений.
Вычисляем среднеквадратическое отклонение:
,
1
)(
1
2
−
−
=
∑
=
n
xx
S
N
i
i
(4)
Если
8
)(
)(
≤
Θ
РS
Р
)(P
, то однократные измерения имеют право на осуществление
и тогда суммарная погрешность намного меньше цены деления СИ и поля
допуска, пренебрегают случайной погрешностью СКО и принимают
. В этих случаях методика выполнения измерений по ГОСТ Р
8.563 – 96 может быть совмещена с инструкцией на эксплуатацию СИ и
норму, заложенную в НТД – (КД, ТД и технологическую инструкцию).
)(Р
i
Θ=∆
Если
8.0
)(
)(
<
Θ
РS
Р
, то величиной )(Р
i
Θ
– НСП пренебрегают и окончательно
принимают за погрешность результата измерения
)()()(
)2/(
PxSZPE
p
ε
=
×
=
; (5)
13
Находим доверительную границу НСП результата измерений Θ(P) ,
согласно РМГ 29 – 99:
N
Θ( Р ) = ± ∑ Θ i , (1)
i =1
где Θ i — граница i -й составляющей неисключенной систематической
погрешности при N ≤ 3, здесь N – число слагаемых, состоящих из пределов
допускаемых основных и дополнительных погрешностей СИ, рабочих
эталонов и т. д.
Θ( Р) = 1,3 × (∆ СИ ) 2 + (∆ Мет. ) 2 + (∆ раб .эталон ) 2 , (2)
при N ≥ 4 – составляющих НСП.
Находим среднее арифметическое от наблюдений:
N
∑x i
x= i =1
, (3)
n
где xi – результат i-го единичного измерения;
x – среднее арифметическое значение измеряемой величины;
n – число наблюдений.
Вычисляем среднеквадратическое отклонение:
N
∑ (x i − x) 2
S= i =1
, (4)
n −1
Θ( Р )
Если ≤ 8 , то однократные измерения имеют право на осуществление
S ( Р)
и тогда суммарная погрешность намного меньше цены деления СИ и поля
допуска, пренебрегают случайной погрешностью СКО и принимают
∆(Р ) = Θ i (P) . В этих случаях методика выполнения измерений по ГОСТ Р
8.563 – 96 может быть совмещена с инструкцией на эксплуатацию СИ и
норму, заложенную в НТД – (КД, ТД и технологическую инструкцию).
Θ( Р )
Если < 0.8 , то величиной Θ i (Р) – НСП пренебрегают и окончательно
S ( Р)
принимают за погрешность результата измерения
E ( P ) = Z ( p / 2) × S ( x) = ε ( P ) ; (5)
13
Страницы
- « первая
- ‹ предыдущая
- …
- 11
- 12
- 13
- 14
- 15
- …
- следующая ›
- последняя »
