ВУЗ:
Составители:
Рубрика:
12
средняя арифметическая скорость движения частиц
2/12/1
6,1
8
⎟
⎠
⎞
⎜
⎝
⎛
≈
⎟
⎠
⎞
⎜
⎝
⎛
=
m
kT
m
kT
v
A
π
и средняя квадратичная скорость
2/12/1
73,1
3
⎟
⎠
⎞
⎜
⎝
⎛
≈
⎟
⎠
⎞
⎜
⎝
⎛
=
m
kT
m
kT
v
KB
,
соответственно
23,1:13,1:1:: =
KBAB
vvv .
Если в плазме присутствует стороннее электрическое поле, описы-
ваемое потенциалом )(r
ϕ
, например в плазме внутри дебаевской сфе-
ры, то распределение частиц по скоростям описывается формулой Мак-
свелла – Больцмана
⎟
⎠
⎞
⎜
⎝
⎛
−
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
=
kT
mv
kT
e
kT
m
f
2
)(
exp
2
),(
2
2/3
r
vr
ϕ
π
,
которую можно считать произведением вероятностей двух независимых
условий: наличия у частицы заданной скорости и нахождения ее в опре-
деленной точке пространства. Первая из этих вероятностей описывается
законом Максвелла, а вторая – формулой Больцмана.
2. Плазма в космическом пространстве
В космическом пространстве присутствуют плазменные образования
разных видов, отличающиеся по энергии частиц и ионному составу, а
также по происхождению. Мы будем рассматривать главным образом
плазменные образования внутри магнитосферы Земли – области лока-
лизации геомагнитного поля, где функционирует подавляющее боль-
шинство КА, предназначенных для решения разнообразных прикладных
и научных задач.
Не останавливаясь на
описании структуры магнитосферы Земли, ко-
торое приведено во многих монографиях и учебных пособиях (см. спи-
средняя арифметическая скорость движения частиц 1/ 2 1/ 2 ⎛ 8kT ⎞ ⎛ kT ⎞ vA = ⎜ ⎟ ≈ 1,6 ⎜ ⎟ ⎝ πm ⎠ ⎝ m⎠ и средняя квадратичная скорость 1/ 2 1/ 2 ⎛ 3kT ⎞ ⎛ kT ⎞ vKB = ⎜ ⎟ ≈ 1,73 ⎜ ⎟ , ⎝ m ⎠ ⎝ m⎠ соответственно vB : v A : vKB = 1 : 1,13 : 1,23 . Если в плазме присутствует стороннее электрическое поле, описы- ваемое потенциалом ϕ (r ) , например в плазме внутри дебаевской сфе- ры, то распределение частиц по скоростям описывается формулой Мак- свелла – Больцмана 3/ 2 ⎛ m ⎞ exp ⎛⎜ eϕ (r ) − mv ⎞, 2 f (r, v ) = ⎜⎜ ⎟⎟ kT 2kT ⎟⎠ ⎝ 2 π kT ⎠ ⎝ которую можно считать произведением вероятностей двух независимых условий: наличия у частицы заданной скорости и нахождения ее в опре- деленной точке пространства. Первая из этих вероятностей описывается законом Максвелла, а вторая – формулой Больцмана. 2. Плазма в космическом пространстве В космическом пространстве присутствуют плазменные образования разных видов, отличающиеся по энергии частиц и ионному составу, а также по происхождению. Мы будем рассматривать главным образом плазменные образования внутри магнитосферы Земли – области лока- лизации геомагнитного поля, где функционирует подавляющее боль- шинство КА, предназначенных для решения разнообразных прикладных и научных задач. Не останавливаясь на описании структуры магнитосферы Земли, ко- торое приведено во многих монографиях и учебных пособиях (см. спи- 12
Страницы
- « первая
- ‹ предыдущая
- …
- 10
- 11
- 12
- 13
- 14
- …
- следующая ›
- последняя »