Механика грунтов. Пьянков С.А - 19 стр.

UptoLike

Составители: 

37
ɉɨ ɪɟɡɭɥɶɬɚɬɚɦ ɢɫɩɵɬɚɧɢɣ ɦɨɠɧɨ ɩɨɫɬɪɨɢɬɶ ɯɚɪɚɤɬɟɪɧɵɟ ɝɪɚɮɢɤɢ ɫɨɩɪɨɬɢɜɥɟɧɢɹ
ɫɞɜɢɝɭ ɞɥɹ ɪɚɡɥɢɱɧɵɯ ɝɪɭɧɬɨɜ.
1. ɋɵɩɭɱɢɟ ɝɪɭɧɬɵ
IJ
=
ı
· tg
ij
+
c
, ɞɥɹ ɫɵɩɭɱɢɯ ɝɪɭɧɬɨɜ ɩɪɚɤɬɢ-
ɱɟɫɤɢ ɨɬɫɭɬɫɬɜɭɟɬ ɫɰɟɩɥɟɧɢɟ,
c
= 0, ɫɥɟɞɨɜɚ-
ɬɟɥɶɧɨ, ɮɨɪɦɭɥɚ ɭɧɢɜɟɪɫɚɥɶɧɨɝɨ ɡɚɤɨɧɚ
ɫɞɜɢɝɚ ɩɪɢɦɟɬ ɜɢɞ
IJ
=
ı
· tg
ij
.
2. Ⱦɥɹ ɨɛɵɱɧɵɯ ɝɥɢɧɢɫɬɵɯ ɝɪɭɧɬɨɜ
IJ
=
ı
· tg
ij
+
c
, ɟɫɬɶ ɢ ɫɰɟɩɥɟɧɢɟ, ɢ ɜɧɭɬɪɟɧɧɟɟ
ɬɪɟɧɢɟ ɜ ɝɪɭɧɬɟ; ɮɨɪɦɭɥɚ ɫɨɨɬɜɟɬɫɬɜɭɟɬ ɭɧɢ-
ɜɟɪɫɚɥɶɧɨɦɭ ɡɚɤɨɧɭ ɫɞɜɢɝɚ.
3. Ƚɥɢɧɚ, ɧɚɫɵɳɟɧɧɚɹ ɜɨɞɨɣ
IJ
=
ı
· tg
ij
+
c
, ɞɥɹ ɝɥɢɧɵ, ɧɚɫɵɳɟɧɧɨɣ ɜɨ-
ɞɨɣ, ɜɧɭɬɪɟɧɧɟɟ ɬɪɟɧɢɟ ɩɪɚɤɬɢɱɟɫɤɢ ɨɬɫɭɬ-
ɫɬɜɭɟɬ, ɭɝɨɥ ɜɧɭɬɪɟɧɧɟɝɨ ɬɪɟɧɢɹ ɫɬɪɟɦɢɬɫɹ
ɤɧɭɥɸ
ij
ĺ0 tg0 = 0, ɫɥɟɞɨɜɚɬɟɥɶɧɨ, ɮɨɪ-
ɦɭɥɚ ɭɧɢɜɟɪɫɚɥɶɧɨɝɨ ɡɚɤɨɧɚ ɫɞɜɢɝɚ ɩɪɢɦɟɬ
ɜɢɞ
IJ
=
c
.
Ⱦɥɹ ɨɩɪɟɞɟɥɟɧɢɹ ɫɨɩɪɨɬɢɜɥɟɧɢɹ ɝɪɭɧɬɚ ɫɞɜɢɝɭ ɫɟɣɱɚɫ ɫɭɳɟɫɬɜɭɟɬ ɞɨɜɨɥɶɧɨ ɦɧɨɝɨ ɩɪɢ-
ɛɨɪɨɜ:
x ɨɞɧɨɫɪɟɡɧɵɟ ɫɞɜɢɝɨɜɵɟ ɩɪɢɛɨɪɵ;
x 2-ɫɪɟɡɧɵɟ ɫɞɜɢɝɨɜɵɟ ɩɪɢɛɨɪɵ;
x
ɩɪɢɛɨɪɵ 3-ɨɫɧɨɝɨ ɫɠɚɬɢɹ (ɫɬɚɛɢɥɨɦɟɬɪɵ);
x ɡɨɧɞɢɪɨɜɚɧɢɟ;
x ɢɫɤɭɫɫɬɜɟɧɧɨɟ ɨɛɪɭɲɟɧɢɟ ɨɬɤɨɫɨɜ;
x ɥɨɩɚɫɬɧɵɟ ɢɫɩɵɬɚɧɢɹ (ɤɪɵɥɶɱɚɬɤɚ);
x ɦɟɬɨɞ ɲɚɪɢɤɨɜɨɝɨ ɲɬɚɦɩɚ.
Ɋɢɫ. 3.8. Ƚɪɚɮɢɤ ɡɚɜɢɫɢɦɨɫɬɢ ɫɨɩɪɨɬɢɜɥɟ-
ɧɢɹ ɫɞɜɢɝɭ ɨɬ ɜɟɪɬɢɤɚɥɶɧɨɝɨ ɧɚɩɪɹɠɟɧɢɹ
ɞɥɹ ɫɵɩɭɱɢɯ ɝɪɭɧɬɨɜ
Ɋɢɫ. 3.10. Ƚɪɚɮɢɤ ɡɚɜɢɫɢɦɨɫɬɢ ɫɨɩɪɨɬɢɜɥɟɧɢɹ
ɫɞɜɢɝɭ ɨɬ ɜɟɪɬɢɤɚɥɶɧɨɝɨ ɧɚɩɪɹɠɟɧɢɹ
ɞɥɹ ɝɥɢɧɵ, ɧɚɫɵɳɟɧɧɨɣ ɜɨɞɨɣ
Ɋɢɫ. 3.9. Ƚɪɚɮɢɤ ɡɚɜɢɫɢɦɨɫɬɢ ɫɨɩɪɨɬɢɜɥɟɧɢɹ
ɫɞɜɢɝɭ ɨɬ ɜɟɪɬɢɤɚɥɶɧɨɝɨ ɧɚɩɪɹɠɟɧɢɹ
ɞɥɹ ɨɛɵɱɧɵɯ ɝɥɢɧɢɫɬɵɯ ɝɪɭɧɬɨɜ
38
ɍɪɚɜɧɟɧɢɟ (3.6) ɭɤɚɡɵɜɚɟɬ ɧɚ ɥɢɧɟɣɧɭɸ ɡɚɜɢɫɢɦɨɫɬɶ ɦɟɠɞɭ ɤɚɫɚɬɟɥɶɧɵɦɢ ɢ ɧɨɪɦɚɥɶ-
ɧɵɦɢ ɧɚɩɪɹɠɟɧɢɹɦɢ ɩɪɢ ɫɞɜɢɝɟ ɜ ɝɪɭɧɬɟ. ȼ ɧɚɫɬɨɹɳɟɟ ɜɪɟɦɹ ɞɨɤɚɡɚɧɨ, ɱɬɨ ɩɪɢɪɨɞɚ ɫɢɥ ɫɨ-
ɩɪɨɬɢɜɥɟɧɢɹ ɝɪɭɧɬɚ ɫɞɜɢɝɭ ɢɦɟɟɬ ɫɥɨɠɧɵɣ ɯɚɪɚɤɬɟɪ, ɚ ɩɨɬɨɦɭ ɩɪɨɫɬɨɟ ɢɯ ɪɚɡɞɟɥɟɧɢɟ ɧɚ ɬɪɟ-
ɧɢɟ ɢ ɫɰɟɩɥɟɧɢɟ ɹɜɥɹɟɬɫɹ ɭɫɥɨɜɧɵɦ. Ɉɞɧɚɤɨ, ɭɱɢɬɵɜɚɹ, ɱɬɨ ɦɧɨɝɨɱɢɫɥɟɧɧɵɟ ɨɩɵɬɵ ɯɨɪɨɲɨ
ɩɨɞɬɜɟɪɠɞɚɸɬ ɩɪɟɞɫɬɚɜɥɟɧɧɭɸ ɭɪɚɜɧɟɧɢɟɦ (3.6) ɩɪɨɫɬɭɸ ɡɚɜɢɫɢɦɨɫɬɶ, ɩɨɤɚ ɫɱɢɬɚɸɬ ɜɨɡ-
ɦɨɠɧɵɦ ɩɨɥɶɡɨɜɚɬɶɫɹ ɭɤɚɡɚɧɧɵɦɢ ɩɨɧɹɬɢɹɦɢ.
3.4. Ɂɚɤɨɧ ɥɚɦɢɧɚɪɧɨɣ ɮɢɥɶɬɪɚɰɢɢ, ɜɨɞɨɩɪɨɧɢɰɚɟɦɨɫɬɶ
ɢ ɮɢɥɶɬɪɚɰɢɨɧɧɵɟ ɫɜɨɣɫɬɜɚ. Ƚɢɞɪɚɜɥɢɱɟɫɤɢɣ ɝɪɚɞɢɟɧɬ,
ɤɨɷɮɮɢɰɢɟɧɬ ɮɢɥɶɬɪɚɰɢɢ
ȼɨɞɨɩɪɨɧɢɰɚɟɦɨɫɬɶ ɫɜɹɡɚɧɚ ɫ ɭɩɥɨɬɧɟɧɢɟɦ ɝɪɭɧɬɚ, ɬɚɤ ɤɚɤ ɩɪɢ ɭɩɥɨɬɧɟɧɢɢ ɢɡ ɝɪɭɧɬɚ ɜ
ɩɟɪɜɭɸ ɨɱɟɪɟɞɶ ɢɡɜɥɟɤɚɟɬɫɹ ɜɥɚɝɚ.
ȼ ɫɬɪɨɢɬɟɥɶɫɬɜɟ ɮɢɥɶɬɪɚɰɢɨɧɧɵɟ ɫɜɨɣɫɬɜɚ ɝɪɭɧɬɚ ɫɜɹɡɚɧɵ:
1. ɋ ɢɧɠɟɧɟɪɧɵɦɢ ɡɚɞɚɱɚɦɢ (ɮɢɥɶɬɪɚɰɢɹ ɛɟɪɟɝɨɜ ɜ ɪɟɡɭɥɶɬɚɬɟ ɫɬɪɨɢɬɟɥɶɫɬɜɚ ɩɥɨɬɢɧ).
2. ɋ ɜɨɩɪɨɫɚɦɢ ɜɪɟɦɟɧɧɨɝɨ ɩɨɧɢɠɟɧɢɹ ɭɪɨɜɧɹ ɝɪɭɧɬɨɜɵɯ ɜɨɞ ɞɥɹ ɨɫɭɲɟɧɢɹ ɤɨɬɥɨɜɚ-
ɧɨɜ ɢ ɩɨɫɥɟɞɭɸɳɟɝɨ ɜɨɡɦɨɠɧɨɝɨ ɭɫɬɪɨɣɫɬɜɚ ɞɪɟɧɚɠɧɵɯ ɫɢɫɬɟɦ.
Ɏɢɥɶɬɪɚɰɢɟɣ
ɧɚɡɵɜɚɸɬ ɞɜɢɠɟɧɢɟ ɫɜɨɛɨɞɧɨɣ ɜɨɞɵ ɜ ɩɨɪɚɯ ɝɪɭɧɬɚ ɜ ɭɫɥɨɜɢɹɯ, ɤɨɝɞɚ
ɩɨɬɨɤ ɜɨɞɵ ɩɨɱɬɢ ɩɨɥɧɨɫɬɶɸ ɡɚɩɨɥɧɹɟɬ ɩɨɪɵ ɝɪɭɧɬɚ, ɬ. ɟ. ɫɨɞɟɪɠɢɬɫɹ ɨɬɧɨɫɢɬɟɥɶɧɨ ɧɟɛɨɥɶ-
ɲɨɟ ɤɨɥɢɱɟɫɬɜɨ ɝɚɡɚ, ɡɚɳɟɦɥɟɧɧɨɝɨ ɜ ɫɤɟɥɟɬɟ ɝɪɭɧɬɚ.
Ɂɚɤɨɧ ɥɚɦɢɧɚɪɧɨɣ ɮɢɥɶɬɪɚɰɢɢ Ⱦɚɪɫɢ ɭɫɬɚɧɚɜɥɢɜɚɟɬ ɡɚɜɢɫɢɦɨɫɬɶ ɫɤɨɪɨɫɬɢ ɮɢɥɶɬɪɚ-
ɰɢɢ ɩɨɪɨɜɨɣ ɜɨɞɵ ɨɬ ɝɪɚɞɢɟɧɬɚ ɝɢɞɪɚɜɥɢɱɟɫɤɨɝɨ ɧɚɩɨɪɚ. Ⱦɜɢɠɟɧɢɟ ɩɨɪɨɜɨɣ ɜɨɞɵ ɧɚɡɵɜɚɸɬ
ɮɢɥɶɬɪɚɰɢɟɣ, ɚ ɫɜɹɡɚɧɧɵɟ ɫ ɷɬɢɦ ɩɪɨɰɟɫɫɵ
ɮɢɥɶɬɪɚɰɢɨɧɧɵɦɢ
. Ɋɚɫɫɦɚɬɪɢɜɚɸɬɫɹ ɬɚɤɢɟ
ɫɤɨɪɨɫɬɢ, ɩɪɢ ɤɨɬɨɪɵɯ ɧɟ ɧɚɛɥɸɞɚɸɬɫɹ ɡɚɜɢɯɪɟɧɢɹ ɝɢɞɪɚɜɥɢɱɟɫɤɨɝɨ ɩɨɬɨɤɚ. Ɍɚɤɨɟ ɞɜɢɠɟɧɢɟ
ɯɚɪɚɤɬɟɪɢɡɭɟɬɫɹ ɤɚɤ ɫɩɨɤɨɣɧɨɟ, ɢɥɢ ɥɚɦɢɧɚɪɧɨɟ.
Ƚɢɞɪɚɜɥɢɱɟɫɤɢɦ ɧɚɩɨɪɨɦ
ɧɚɡɵɜɚɸɬ ɞɚɜɥɟɧɢɟ ɜ ɩɨɪɨɜɨɣ ɜɨɞɟ, ɜɵɪɚɠɟɧɧɨɟ ɜ ɟɞɢɧɢɰɚɯ
ɜɵɫɨɬɵ ɷɤɜɢɜɚɥɟɧɬɧɨɝɨ ɜɨɞɹɧɨɝɨ ɫɬɨɥɛɚ:
w
PH
J
, (3.7)
ɝɞɟ
Ȗ
w
ɭɞɟɥɶɧɵɣ ɜɟɫ ɜɨɞɵ.
Ƚɪɚɞɢɟɧɬɨɦ ɝɢɞɪɚɜɥɢɱɟɫɤɨɝɨ ɧɚɩɨɪɚ
ɧɚɡɵɜɚɸɬ ɛɟɡɪɚɡɦɟɪɧɭɸ
ɜɟɥɢɱɢɧɭ, ɪɚɜɧɭɸ ɨɬɧɨɲɟɧɢɸ ɪɚɡɧɨɫɬɢ ɝɢɞɪɚɜɥɢɱɟɫɤɢɯ ɧɚɩɨɪɨɜ ɧɚ ɜɯɨɞɟ ɢ ɜɵɯɨɞɟ ɮɢɥɶɬɪɚ-
ɰɢɨɧɧɨɝɨ ɩɨɬɨɤɚ ɤ ɞɥɢɧɟ ɩɭɬɢ ɮɢɥɶɬɪɚɰɢɢ ɩɨɪɨɜɨɣ ɜɨɞɵ (ɪɢɫ. 3.11, ɛ):
./)(
jtgLHHi
ɜɵɯɜɯ
(3.8)
Ɋɢɫ. 3.11. ɋɯɟɦɵ ɮɢɥɶɬɪɚɰɢɢ ɩɨɪɨɜɨɣ ɜɨɞɵ:
ɚɜ ɩɪɢɛɨɪɟ Ⱦɚɪɫɢ; ɛɜ ɝɪɭɧɬɨɜɨɦ ɦɚɫɫɢɜɟ; 1 – ɩɟɫɨɤ; 2 – ɫɟɬɤɚ;
3, 4 – ɭɪɨɜɧɢ ɜɨɞɵ ɧɚ ɜɯɨɞɟ ɢ ɜɵɯɨɞɟ; jɭɝɨɥ ɧɚɤɥɨɧɚ ɩɨɬɨɤɚ
ɛɚ