Математическая логика и теория алгоритмов. Самохин А.В. - 82 стр.

UptoLike

Составители: 

Рубрика: 

82 çÌÁ×Á III. ìÏÇÉËÁ ×ÙÓËÁÚÙ×ÁÎÉÊ
. . . . . .
òÉÓ. 3. äÅÒÅ×Ï ÉÚ ÜÌÅÍÅÎÔÏ× 3-ÂÏÌØÛÉÎÓÔ×Á.
ÓÔÒÁÎÎÕÀ ×ÅÝØ: ×ÏÚØÍ¾Í k ÒÁ×ÎÙÍ c log n ÐÒÉ ÄÏÓÔÁÔÏÞÎÏ ÂÏÌØÛÏÍ ËÏÜÆ-
ÆÉÃÉÅÎÔÅ ÐÒÏÐÏÒÃÉÏÎÁÌØÎÏÓÔÉ c (ÐÒÉ ÜÔÏÍ ÞÉÓÌÏ ×ÈÏÄÏ× ÔÁËÏÊ ÓÈÅÍÙ ÂÕÄÅÔ
ÐÏÌÉÎÏÍÉÁÌØÎÏ ÚÁ×ÉÓÅÔØ ÏÔ n) É ÎÁÐÉÛÅÍ ÎÁ ×ÈÏÄÁÈ ÓÌÕÞÁÊÎÏ ×ÙÂÒÁÎÎÙÅ
ÐÅÒÅÍÅÎÎÙÅ ÉÚ ÄÁÎÎÏÇÏ ÎÁÍ ÎÁÂÏÒÁ x
1
, . . . , x
n
. (ðÅÒÅÍÅÎÎÙÅ, ÚÁÐÉÓÙ×ÁÅÍÙÅ
ÎÁ ÒÁÚÎÙÈ ×ÈÏÄÁÈ, ×ÙÂÉÒÁÀÔÓÑ ÎÅÚÁ×ÉÓÉÍÏ.) ïËÁÚÙ×ÁÅÔÓÑ, ÞÔÏ Ó ÎÅÎÕÌÅ-
×ÏÊ ×ÅÒÏÑÔÎÏÓÔØÀ ÜÔÁ ÓÈÅÍÁ ÂÕÄÅÔ ×ÙÞÉÓÌÑÔØ ÆÕÎËÃÉÀ ÂÏÌØÛÉÎÓÔ×Á ÓÒÅÄÉ
x
1
, . . . , x
n
, ÅÓÌÉ ËÏÎÓÔÁÎÔÁ c ÄÏÓÔÁÔÏÞÎÏ ×ÅÌÉËÁ. óÌÅÄÏ×ÁÔÅÌØÎÏ, ÉÓËÏÍÁÑ ÓÈÅ-
ÍÁ ÓÕÝÅÓÔ×ÕÅÔ.
ïÂÒÁÔÉÔÅ ×ÎÉÍÁÎÉÅ: ÎÁÍ ÕÄÁÓÔÓÑ ÄÏËÁÚÁÔØ ÓÕÝÅÓÔ×Ï×ÁÎÉÅ ÉÎÔÅÒÅÓÕÀÝÅÊ
ÎÁÓ ÓÈÅÍÙ, ÎÅ ÐÒÅÄßÑ×É× Å¾ Ñ×ÎÏ. (ôÁËÏÅ ÉÓÐÏÌØÚÏ×ÁÎÉÅ ×ÅÒÏÑÔÎÏÓÔÎÙÈ ÍÅ-
ÔÏÄÏ× × ËÏÍÂÉÎÁÔÏÒÎÙÈ ÒÁÓÓÕÖÄÅÎÉÑÈ ÞÁÓÔÏ ÂÙ×ÁÅÔ ÐÏÌÅÚÎÏ.)
éÔÁË, ÐÏÞÅÍÕ ÖÅ ÓÈÅÍÁ Ó ÐÏÌÏÖÉÔÅÌØÎÏÊ ×ÅÒÏÑÔÎÏÓÔØÀ ×ÙÞÉÓÌÑÅÔ ÆÕÎË-
ÃÉÀ ÂÏÌØÛÉÎÓÔ×Á? üÔÏ ÄÏËÁÚÙ×ÁÅÔÓÑ ÔÁË: ÒÁÓÓÍÏÔÒÉÍ ËÁËÏÊ-ÔÏ ÏÄÉÎ ÎÁÂÏÒ
ÚÎÁÞÅÎÉÊ ÎÁ ×ÈÏÄÁÈ É ÄÏËÁÖÅÍ, ÞÔÏ ÎÁ ÜÔÏÍ ËÏÎËÒÅÔÎÏÍ ÎÁÂÏÒÅ ÓÌÕÞÁÊÎÁÑ
ÓÈÅÍÁ ×ÙÄÁ¾Ô ÐÒÁ×ÉÌØÎÙÊ ÏÔ×ÅÔ Ó ×ÅÒÏÑÔÎÏÓÔØÀ, ÏÞÅÎØ ÂÌÉÚËÏÊ Ë ÅÄÉÎÉÃÅ
(ÒÁ×ÎÏÊ 1 ε ÐÒÉ ÏÞÅÎØ ÍÁÌÏÍ ε).
åÓÌÉ ÞÉÓÌÏ ε ÎÁÓÔÏÌØËÏ ÍÁÌÏ, ÞÔÏ ÏÓÔÁ¾ÔÓÑ ÍÅÎØÛÉÍ ÅÄÉÎÉÃÙ ÄÁÖÅ ÐÏÓÌÅ
ÕÍÎÏÖÅÎÉÑ ÎÁ ÞÉÓÌÏ ×ÏÚÍÏÖÎÙÈ ×ÈÏÄÏ× (2
n
), ÔÏ ÐÏÌÕÞÁÅÍ ÔÒÅÂÕÅÍÏÅ (ËÁÖÄÏÅ
ÉÚ 2
n
ÓÏÂÙÔÉÊ ÉÍÅÅÔ ×ÅÒÏÑÔÎÏÓÔØ ÎÅ ÍÅÎØÛÅ 1 ε, ÚÎÁÞÉÔ ÉÈ ÐÅÒÅÓÅÞÅÎÉÅ
ÉÍÅÅÔ ×ÅÒÏÑÔÎÏÓÔØ ÎÅ ÍÅÎØÛÅ 1 2
n
ε > 0).
éÔÁË, ÏÓÔÁÌÏÓØ ÏÃÅÎÉÔØ ×ÅÒÏÑÔÎÏÓÔØ ÔÏÇÏ, ÞÔÏ ÓÌÕÞÁÊÎÁÑ ÓÈÅÍÁ ÄÁÓÔ ÐÒÁ-
×ÉÌØÎÙÊ ÏÔ×ÅÔ ÎÁ ÄÁÎÎÏÍ ×ÈÏÄÅ. ðÕÓÔØ ÄÏÌÑ ÅÄÉÎÉà ÓÒÅÄÉ ×ÓÅÈ ×ÈÏÄÏ× ÒÁ×-
ÎÁ p. ôÏÇÄÁ ÎÁ ËÁÖÄÙÊ ×ÈÏÄÎÏÊ ÐÒÏ×ÏÄ ÓÈÅÍÙ ÐÏÄÁ¾ÔÓÑ ÅÄÉÎÉÃÁ Ó ×ÅÒÏÑÔ-
ÎÏÓÔØÀ p É ÎÕÌØ Ó ×ÅÒÏÑÔÎÏÓÔØÀ 1 p (×ÙÂÏÒ ÓÌÕÞÁÊÎÏÊ ÐÅÒÅÍÅÎÎÏÊ ÄÁ¾Ô
ÅÄÉÎÉÃÕ Ó ×ÅÒÏÑÔÎÏÓÔØÀ p), ÐÒÉÞ¾Í ÓÉÇÎÁÌÙ ÎÁ ×ÓÅÈ ×ÈÏÄÁÈ ÎÅÚÁ×ÉÓÉÍÙ.
åÓÌÉ ÎÁ ÔÒ¾È ×ÈÏÄÁÈ ÜÌÅÍÅÎÔÁ 3-ÂÏÌØÛÉÎÓÔ×Á ÓÉÇÎÁÌÙ ÎÅÚÁ×ÉÓÉÍÙ,
É ×ÅÒÏÑÔÎÏÓÔØ ÐÏÑ×ÌÅÎÉÑ ÅÄÉÎÉÃÙ ÎÁ ËÁÖÄÏÍ ×ÈÏÄÅ ÅÓÔØ p, ÔÏ ×ÅÒÏÑÔ-
ÎÏÓÔØ ÐÏÑ×ÌÅÎÉÑ ÅÄÉÎÉÃÙ ÎÁ ×ÙÈÏÄÅ ÅÓÔØ ϕ(p) = 3p
2
(1 p) + p
3
= 3p
2
2p
3
. îÁ ÓÌÅÄÕÀÝÉÈ ÕÒÏ×ÎÑÈ ×ÅÒÏÑÔÎÏÓÔØ ÐÏÑ×ÌÅÎÉÑ ÅÄÉÎÉÃÙ ÂÕÄÅÔ ÒÁ×ÎÁ
ϕ(ϕ(p)), ϕ(ϕ(ϕ(p))), . . . çÒÁÆÉË ÆÕÎËÃÉÉ ϕ(x) ÎÁ ÏÔÒÅÚËÅ [0, 1] (ÒÉÓ. 3) ÐÏËÁ-
ÚÙ×ÁÅÔ, ÞÔÏ ÐÒÉ ÉÔÅÒÁÃÉÑÈ ÆÕÎËÃÉÉ ϕ ÄÉÓÂÁÌÁÎÓ (ÏÔËÌÏÎÅÎÉÅ ÏÔ ÓÅÒÅÄÉÎÙ)
ÎÁÒÁÓÔÁÅÔ É ÐÏÓÌÅÄÏ×ÁÔÅÌØÎÏÓÔØ ÓÔÒÅÍÉÔÓÑ Ë ËÒÁÀ ÏÔÒÅÚËÁ. îÁÄÏ ÔÏÌØËÏ
ÏÃÅÎÉÔØ ÞÉÓÌÏ ÛÁÇÏ×.
82                                         çÌÁ×Á III. ìÏÇÉËÁ ×ÙÓËÁÚÙ×ÁÎÉÊ
                              . .    . .    . .




               òÉÓ. 3. äÅÒÅ×Ï ÉÚ ÜÌÅÍÅÎÔÏ× 3-ÂÏÌØÛÉÎÓÔ×Á.

ÓÔÒÁÎÎÕÀ ×ÅÝØ: ×ÏÚØÍ¾Í k ÒÁ×ÎÙÍ c log n ÐÒÉ ÄÏÓÔÁÔÏÞÎÏ ÂÏÌØÛÏÍ ËÏÜÆ-
ÆÉÃÉÅÎÔÅ ÐÒÏÐÏÒÃÉÏÎÁÌØÎÏÓÔÉ c (ÐÒÉ ÜÔÏÍ ÞÉÓÌÏ ×ÈÏÄÏ× ÔÁËÏÊ ÓÈÅÍÙ ÂÕÄÅÔ
ÐÏÌÉÎÏÍÉÁÌØÎÏ ÚÁ×ÉÓÅÔØ ÏÔ n) É ÎÁÐÉÛÅÍ ÎÁ ×ÈÏÄÁÈ ÓÌÕÞÁÊÎÏ ×ÙÂÒÁÎÎÙÅ
ÐÅÒÅÍÅÎÎÙÅ ÉÚ ÄÁÎÎÏÇÏ ÎÁÍ ÎÁÂÏÒÁ x1, . . . , xn. (ðÅÒÅÍÅÎÎÙÅ, ÚÁÐÉÓÙ×ÁÅÍÙÅ
ÎÁ ÒÁÚÎÙÈ ×ÈÏÄÁÈ, ×ÙÂÉÒÁÀÔÓÑ ÎÅÚÁ×ÉÓÉÍÏ.) ïËÁÚÙ×ÁÅÔÓÑ, ÞÔÏ Ó ÎÅÎÕÌÅ-
×ÏÊ ×ÅÒÏÑÔÎÏÓÔØÀ ÜÔÁ ÓÈÅÍÁ ÂÕÄÅÔ ×ÙÞÉÓÌÑÔØ ÆÕÎËÃÉÀ ÂÏÌØÛÉÎÓÔ×Á ÓÒÅÄÉ
x1, . . . , xn, ÅÓÌÉ ËÏÎÓÔÁÎÔÁ c ÄÏÓÔÁÔÏÞÎÏ ×ÅÌÉËÁ. óÌÅÄÏ×ÁÔÅÌØÎÏ, ÉÓËÏÍÁÑ ÓÈÅ-
ÍÁ ÓÕÝÅÓÔ×ÕÅÔ.
   ïÂÒÁÔÉÔÅ ×ÎÉÍÁÎÉÅ: ÎÁÍ ÕÄÁÓÔÓÑ ÄÏËÁÚÁÔØ ÓÕÝÅÓÔ×Ï×ÁÎÉÅ ÉÎÔÅÒÅÓÕÀÝÅÊ
ÎÁÓ ÓÈÅÍÙ, ÎÅ ÐÒÅÄßÑ×É× Å¾ Ñ×ÎÏ. (ôÁËÏÅ ÉÓÐÏÌØÚÏ×ÁÎÉÅ ×ÅÒÏÑÔÎÏÓÔÎÙÈ ÍÅ-
ÔÏÄÏ× × ËÏÍÂÉÎÁÔÏÒÎÙÈ ÒÁÓÓÕÖÄÅÎÉÑÈ ÞÁÓÔÏ ÂÙ×ÁÅÔ ÐÏÌÅÚÎÏ.)
   éÔÁË, ÐÏÞÅÍÕ ÖÅ ÓÈÅÍÁ Ó ÐÏÌÏÖÉÔÅÌØÎÏÊ ×ÅÒÏÑÔÎÏÓÔØÀ ×ÙÞÉÓÌÑÅÔ ÆÕÎË-
ÃÉÀ ÂÏÌØÛÉÎÓÔ×Á? üÔÏ ÄÏËÁÚÙ×ÁÅÔÓÑ ÔÁË: ÒÁÓÓÍÏÔÒÉÍ ËÁËÏÊ-ÔÏ ÏÄÉÎ ÎÁÂÏÒ
ÚÎÁÞÅÎÉÊ ÎÁ ×ÈÏÄÁÈ É ÄÏËÁÖÅÍ, ÞÔÏ ÎÁ ÜÔÏÍ ËÏÎËÒÅÔÎÏÍ ÎÁÂÏÒÅ ÓÌÕÞÁÊÎÁÑ
ÓÈÅÍÁ ×ÙÄÁ¾Ô ÐÒÁ×ÉÌØÎÙÊ ÏÔ×ÅÔ Ó ×ÅÒÏÑÔÎÏÓÔØÀ, ÏÞÅÎØ ÂÌÉÚËÏÊ Ë ÅÄÉÎÉÃÅ
(ÒÁ×ÎÏÊ 1 − ε ÐÒÉ ÏÞÅÎØ ÍÁÌÏÍ ε).
   åÓÌÉ ÞÉÓÌÏ ε ÎÁÓÔÏÌØËÏ ÍÁÌÏ, ÞÔÏ ÏÓÔÁ¾ÔÓÑ ÍÅÎØÛÉÍ ÅÄÉÎÉÃÙ ÄÁÖÅ ÐÏÓÌÅ
ÕÍÎÏÖÅÎÉÑ ÎÁ ÞÉÓÌÏ ×ÏÚÍÏÖÎÙÈ ×ÈÏÄÏ× (2n), ÔÏ ÐÏÌÕÞÁÅÍ ÔÒÅÂÕÅÍÏÅ (ËÁÖÄÏÅ
ÉÚ 2n ÓÏÂÙÔÉÊ ÉÍÅÅÔ ×ÅÒÏÑÔÎÏÓÔØ ÎÅ ÍÅÎØÛÅ 1 − ε, ÚÎÁÞÉÔ ÉÈ ÐÅÒÅÓÅÞÅÎÉÅ
ÉÍÅÅÔ ×ÅÒÏÑÔÎÏÓÔØ ÎÅ ÍÅÎØÛÅ 1 − 2n ε > 0).
   éÔÁË, ÏÓÔÁÌÏÓØ ÏÃÅÎÉÔØ ×ÅÒÏÑÔÎÏÓÔØ ÔÏÇÏ, ÞÔÏ ÓÌÕÞÁÊÎÁÑ ÓÈÅÍÁ ÄÁÓÔ ÐÒÁ-
×ÉÌØÎÙÊ ÏÔ×ÅÔ ÎÁ ÄÁÎÎÏÍ ×ÈÏÄÅ. ðÕÓÔØ ÄÏÌÑ ÅÄÉÎÉà ÓÒÅÄÉ ×ÓÅÈ ×ÈÏÄÏ× ÒÁ×-
ÎÁ p. ôÏÇÄÁ ÎÁ ËÁÖÄÙÊ ×ÈÏÄÎÏÊ ÐÒÏ×ÏÄ ÓÈÅÍÙ ÐÏÄÁ¾ÔÓÑ ÅÄÉÎÉÃÁ Ó ×ÅÒÏÑÔ-
ÎÏÓÔØÀ p É ÎÕÌØ Ó ×ÅÒÏÑÔÎÏÓÔØÀ 1 − p (×ÙÂÏÒ ÓÌÕÞÁÊÎÏÊ ÐÅÒÅÍÅÎÎÏÊ ÄÁ¾Ô
ÅÄÉÎÉÃÕ Ó ×ÅÒÏÑÔÎÏÓÔØÀ p), ÐÒÉÞ¾Í ÓÉÇÎÁÌÙ ÎÁ ×ÓÅÈ ×ÈÏÄÁÈ ÎÅÚÁ×ÉÓÉÍÙ.
   åÓÌÉ ÎÁ ÔÒ¾È ×ÈÏÄÁÈ ÜÌÅÍÅÎÔÁ 3-ÂÏÌØÛÉÎÓÔ×Á ÓÉÇÎÁÌÙ ÎÅÚÁ×ÉÓÉÍÙ,
É ×ÅÒÏÑÔÎÏÓÔØ ÐÏÑ×ÌÅÎÉÑ ÅÄÉÎÉÃÙ ÎÁ ËÁÖÄÏÍ ×ÈÏÄÅ ÅÓÔØ p, ÔÏ ×ÅÒÏÑÔ-
ÎÏÓÔØ ÐÏÑ×ÌÅÎÉÑ ÅÄÉÎÉÃÙ ÎÁ ×ÙÈÏÄÅ ÅÓÔØ ϕ(p) = 3p2(1 − p) + p3 = 3p2 −
− 2p3. îÁ ÓÌÅÄÕÀÝÉÈ ÕÒÏ×ÎÑÈ ×ÅÒÏÑÔÎÏÓÔØ ÐÏÑ×ÌÅÎÉÑ ÅÄÉÎÉÃÙ ÂÕÄÅÔ ÒÁ×ÎÁ
ϕ(ϕ(p)), ϕ(ϕ(ϕ(p))), . . . çÒÁÆÉË ÆÕÎËÃÉÉ ϕ(x) ÎÁ ÏÔÒÅÚËÅ [0, 1] (ÒÉÓ. 3) ÐÏËÁ-
ÚÙ×ÁÅÔ, ÞÔÏ ÐÒÉ ÉÔÅÒÁÃÉÑÈ ÆÕÎËÃÉÉ ϕ ÄÉÓÂÁÌÁÎÓ (ÏÔËÌÏÎÅÎÉÅ ÏÔ ÓÅÒÅÄÉÎÙ)
ÎÁÒÁÓÔÁÅÔ É ÐÏÓÌÅÄÏ×ÁÔÅÌØÎÏÓÔØ ÓÔÒÅÍÉÔÓÑ Ë ËÒÁÀ ÏÔÒÅÚËÁ. îÁÄÏ ÔÏÌØËÏ
ÏÃÅÎÉÔØ ÞÉÓÌÏ ÛÁÇÏ×.