Математическая логика и теория алгоритмов. Самохин А.В. - 87 стр.

UptoLike

Составители: 

Рубрика: 

§1. éÓÞÉÓÌÅÎÉÅ ×ÙÓËÁÚÙ×ÁÎÉÊ 87
äÏËÁÚÁÔÅÌØÓÔ×Ï. íÙ ÐÒÅÄÌÏÖÉÍ ÒÑÄ ÁÌØÔÅÒÎÁÔÉ×ÎÙÈ ÄÏËÁÚÁÔÅÌØÓÔ×
ÜÔÏÊ ÔÅÏÒÅÍÙ. îÏ ÐÒÅÖÄÅ ×ÓÅÇÏ ÍÙ ÄÏÌÖÎÙ ÐÒÉÏÂÒÅÓÔÉ ÎÅËÏÔÏÒÙÊ ÏÐÙÔ
ÐÏÓÔÒÏÅÎÉÑ ×Ù×ÏÄÏ× É ÉÓÐÏÌØÚÏ×ÁÎÉÑ ÁËÓÉÏÍ.
ìÅÍÍÁ 1. ëÁËÏ×Á ÂÙ ÎÉ ÂÙÌÁ ÆÏÒÍÕÌÁ D, ÆÏÒÍÕÌÁ (D D) Ñ×ÌÑÅÔÓÑ
ÔÅÏÒÅÍÏÊ.
äÏËÁÖÅÍ ÌÅÍÍÕ, ÐÒÅÄßÑ×É× ×Ù×ÏÄ ÆÏÒÍÕÌÙ (D D) × ÉÓÞÉÓÌÅÎÉÉ ×Ù-
ÓËÁÚÙ×ÁÎÉÊ.
1. (D ((D D) D)) ((D (D D)) (D D))
[ÁËÓÉÏÍÁ 2 ÐÒÉ A = D, B = (D D), C = D];
2. D ((D D) D) [ÁËÓÉÏÍÁ 1];
3. (D (D D)) (D D) [ÉÚ 1 É 2 ÐÏ ÐÒÁ×ÉÌÕ MP];
4. D (D D) [ÁËÓÉÏÍÁ 1];
5. (D D) [ÉÚ 3 É 4 ÐÏ ÐÒÁ×ÉÌÕ MP].
ëÁË ×ÉÄÎÏ, ×Ù×ÏÄ ÄÁÖÅ ÔÁËÏÊ ÐÒÏÓÔÏÊ ÔÁ×ÔÏÌÏÇÉÉ, ËÁË (D D), ÔÒÅÂÕÅÔ
ÎÅËÏÔÏÒÏÊ ÉÚÏÂÒÅÔÁÔÅÌØÎÏÓÔÉ. íÙ ÏÂÌÅÇÞÉÍ ÓÅÂÅ ÖÉÚÎØ, ÄÏËÁÚÁ× ÎÅËÏÔÏÒÏÅ
ÏÂÝÅÅ ÕÔ×ÅÒÖÄÅÎÉÅ Ï ×Ù×ÏÄÉÍÏÓÔÉ.
þÁÓÔÏ ÍÙ ÒÁÓÓÕÖÄÁÅÍ ÔÁË: ÐÒÅÄÐÏÌÁÇÁÅÍ, ÞÔÏ ×ÙÐÏÌÎÅÎÏ ËÁËÏÅ-ÔÏ ÕÔ×ÅÒ-
ÖÄÅÎÉÅ A, É ×Ù×ÏÄÉÍ ÒÁÚÌÉÞÎÙÅ ÓÌÅÄÓÔ×ÉÑ. ðÏÓÌÅ ÔÏÇÏ ËÁË ÄÒÕÇÏÅ ÕÔ×ÅÒ-
ÖÄÅÎÉÅ B ÄÏËÁÚÁÎÏ, ÍÙ ×ÓÐÏÍÉÎÁÅÍ, ÞÔÏ ÉÓÐÏÌØÚÏ×ÁÌÉ ÐÒÅÄÐÏÌÏÖÅÎÉÅ A,
É ÚÁËÌÀÞÁÅÍ, ÞÔÏ ÍÙ ÄÏËÁÚÁÌÉ ÕÔ×ÅÒÖÄÅÎÉÅ A B. óÌÅÄÕÀÝÁÑ ÌÅÍÍÁ,
ÎÁÚÙ×ÁÅÍÁÑ ÉÎÏÇÄÁ ¥ÌÅÍÍÏÊ Ï ÄÅÄÕËÃÉÉ¥, ÐÏËÁÚÙ×ÁÅÔ, ÞÔÏ ÜÔÏÔ ÐÏÄÈÏÄ ÐÒÁ-
×ÏÍÅÒÅÎ É ÄÌÑ ÉÓÞÉÓÌÅÎÉÑ ×ÙÓËÁÚÙ×ÁÎÉÊ.
ðÕÓÔØ ¡ ÎÅËÏÔÏÒÏÅ ÍÎÏÖÅÓÔ×Ï ÆÏÒÍÕÌ. ÷Ù×ÏÄÏÍ ÉÚ ÎÁÚÙ×ÁÅÔÓÑ ËÏ-
ÎÅÞÎÁÑ ÐÏÓÌÅÄÏ×ÁÔÅÌØÎÏÓÔØ ÆÏÒÍÕÌ, ËÁÖÄÁÑ ÉÚ ËÏÔÏÒÙÈ Ñ×ÌÑÅÔÓÑ ÁËÓÉÏÍÏÊ,
ÐÒÉÎÁÄÌÅÖÉÔ ÉÌÉ ÐÏÌÕÞÁÅÔÓÑ ÉÚ ÐÒÅÄÙÄÕÝÉÈ ÐÏ ÐÒÁ×ÉÌÕ MP. (äÒÕÇÉÍÉ
ÓÌÏ×ÁÍÉ, ÍÙ ËÁË ÂÙ ÄÏÂÁ×ÌÑÅÍ ÆÏÒÍÕÌÙ ÉÚ Ë ÁËÓÉÏÍÁÍ ÉÓÞÉÓÌÅÎÉÑ ×Ù-
ÓËÁÚÙ×ÁÎÉÊ ¡ ÉÍÅÎÎÏ ËÁË ÆÏÒÍÕÌÙ, Á ÎÅ ËÁË ÓÈÅÍÙ ÁËÓÉÏÍ.) æÏÒÍÕÌÁ A
×Ù×ÏÄÉÍÁ ÉÚ •, ÅÓÌÉ ÓÕÝÅÓÔ×ÕÅÔ ×Ù×ÏÄ ÉÚ •, × ËÏÔÏÒÏÍ ÏÎÁ Ñ×ÌÑÅÔÓÑ ÐÏ-
ÓÌÅÄÎÅÊ ÆÏÒÍÕÌÏÊ. ÷ ÜÔÏÍ ÓÌÕÞÁÅ ÍÙ ÐÉÛÅÍ ` A. åÓÌÉ ÐÕÓÔÏ, ÔÏ ÒÅÞØ
ÉÄ¾Ô Ï ×Ù×ÏÄÉÍÏÓÔÉ × ÉÓÞÉÓÌÅÎÉÉ ×ÙÓËÁÚÙ×ÁÎÉÊ, É ×ÍÅÓÔÏ ` A ÐÉÛÕÔ
ÐÒÏÓÔÏ ` A.
ìÅÍÍÁ 2 ÄÅÄÕËÃÉÉ). ðÕÓÔØ ¡ ÍÎÏÖÅÓÔ×Ï ÆÏÒÍÕÌ. ôÏÇÄÁ ` A B
ÔÏÇÄÁ É ÔÏÌØËÏ ÔÏÇÄÁ, ËÏÇÄÁ {A} ` B.
÷ ÏÄÎÕ ÓÔÏÒÏÎÕ ÕÔ×ÅÒÖÄÅÎÉÅ ÐÏÞÔÉ ÏÞÅ×ÉÄÎÏ: ÐÕÓÔØ ` (A B). ôÏÇÄÁ
É , A ` (A B). (äÌÑ ËÒÁÔËÏÓÔÉ ÍÙ ÏÐÕÓËÁÅÍ ÆÉÇÕÒÎÙÅ ÓËÏÂËÉ É ÚÁÍÅ-
ÎÑÅÍ ÚÎÁË ÏÂßÅÄÉÎÅÎÉÑ ÚÁÐÑÔÏÊ.) ðÏ ÏÐÒÅÄÅÌÅÎÉÀ , A ` A, ÏÔËÕÄÁ ÐÏ MP
ÐÏÌÕÞÁÅÍ , A ` B.
ðÕÓÔØ ÔÅÐÅÒØ •, A ` B. îÁÍ ÎÁÄÏ ÐÏÓÔÒÏÉÔØ ×Ù×ÏÄ ÆÏÒÍÕÌÙ A B ÉÚ •.
÷ÏÚØÍ¾Í ×Ù×ÏÄ C
1
, C
2
, . . . , C
n
ÆÏÒÍÕÌÙ B = C
n
ÉÚ , A. ðÒÉÐÉÛÅÍ ËÏ ×ÓÅÍ
§1. éÓÞÉÓÌÅÎÉÅ ×ÙÓËÁÚÙ×ÁÎÉÊ                                            87

   äÏËÁÚÁÔÅÌØÓÔ×Ï. íÙ ÐÒÅÄÌÏÖÉÍ ÒÑÄ ÁÌØÔÅÒÎÁÔÉ×ÎÙÈ ÄÏËÁÚÁÔÅÌØÓÔ×
ÜÔÏÊ ÔÅÏÒÅÍÙ. îÏ ÐÒÅÖÄÅ ×ÓÅÇÏ ÍÙ ÄÏÌÖÎÙ ÐÒÉÏÂÒÅÓÔÉ ÎÅËÏÔÏÒÙÊ ÏÐÙÔ
ÐÏÓÔÒÏÅÎÉÑ ×Ù×ÏÄÏ× É ÉÓÐÏÌØÚÏ×ÁÎÉÑ ÁËÓÉÏÍ.
   ìÅÍÍÁ 1. ëÁËÏ×Á ÂÙ ÎÉ ÂÙÌÁ ÆÏÒÍÕÌÁ D, ÆÏÒÍÕÌÁ (D → D) Ñ×ÌÑÅÔÓÑ
ÔÅÏÒÅÍÏÊ.
   äÏËÁÖÅÍ ÌÅÍÍÕ, ÐÒÅÄßÑ×É× ×Ù×ÏÄ ÆÏÒÍÕÌÙ (D → D) × ÉÓÞÉÓÌÅÎÉÉ ×Ù-
ÓËÁÚÙ×ÁÎÉÊ.
1. (D → ((D → D) → D)) → ((D → (D → D)) → (D → D))
  [ÁËÓÉÏÍÁ 2 ÐÒÉ A = D, B = (D → D), C = D];
2. D → ((D → D) → D) [ÁËÓÉÏÍÁ 1];
3. (D → (D → D)) → (D → D) [ÉÚ 1 É 2 ÐÏ ÐÒÁ×ÉÌÕ MP];
4. D → (D → D) [ÁËÓÉÏÍÁ 1];
5. (D → D) [ÉÚ 3 É 4 ÐÏ ÐÒÁ×ÉÌÕ MP].
   ëÁË ×ÉÄÎÏ, ×Ù×ÏÄ ÄÁÖÅ ÔÁËÏÊ ÐÒÏÓÔÏÊ ÔÁ×ÔÏÌÏÇÉÉ, ËÁË (D → D), ÔÒÅÂÕÅÔ
ÎÅËÏÔÏÒÏÊ ÉÚÏÂÒÅÔÁÔÅÌØÎÏÓÔÉ. íÙ ÏÂÌÅÇÞÉÍ ÓÅÂÅ ÖÉÚÎØ, ÄÏËÁÚÁ× ÎÅËÏÔÏÒÏÅ
ÏÂÝÅÅ ÕÔ×ÅÒÖÄÅÎÉÅ Ï ×Ù×ÏÄÉÍÏÓÔÉ.
   þÁÓÔÏ ÍÙ ÒÁÓÓÕÖÄÁÅÍ ÔÁË: ÐÒÅÄÐÏÌÁÇÁÅÍ, ÞÔÏ ×ÙÐÏÌÎÅÎÏ ËÁËÏÅ-ÔÏ ÕÔ×ÅÒ-
ÖÄÅÎÉÅ A, É ×Ù×ÏÄÉÍ ÒÁÚÌÉÞÎÙÅ ÓÌÅÄÓÔ×ÉÑ. ðÏÓÌÅ ÔÏÇÏ ËÁË ÄÒÕÇÏÅ ÕÔ×ÅÒ-
ÖÄÅÎÉÅ B ÄÏËÁÚÁÎÏ, ÍÙ ×ÓÐÏÍÉÎÁÅÍ, ÞÔÏ ÉÓÐÏÌØÚÏ×ÁÌÉ ÐÒÅÄÐÏÌÏÖÅÎÉÅ A,
É ÚÁËÌÀÞÁÅÍ, ÞÔÏ ÍÙ ÄÏËÁÚÁÌÉ ÕÔ×ÅÒÖÄÅÎÉÅ A → B. óÌÅÄÕÀÝÁÑ ÌÅÍÍÁ,
ÎÁÚÙ×ÁÅÍÁÑ ÉÎÏÇÄÁ ¥ÌÅÍÍÏÊ Ï ÄÅÄÕËÃÉÉ¥, ÐÏËÁÚÙ×ÁÅÔ, ÞÔÏ ÜÔÏÔ ÐÏÄÈÏÄ ÐÒÁ-
×ÏÍÅÒÅÎ É ÄÌÑ ÉÓÞÉÓÌÅÎÉÑ ×ÙÓËÁÚÙ×ÁÎÉÊ.
   ðÕÓÔØ • ¡ ÎÅËÏÔÏÒÏÅ ÍÎÏÖÅÓÔ×Ï ÆÏÒÍÕÌ. ÷Ù×ÏÄÏÍ ÉÚ • ÎÁÚÙ×ÁÅÔÓÑ ËÏ-
ÎÅÞÎÁÑ ÐÏÓÌÅÄÏ×ÁÔÅÌØÎÏÓÔØ ÆÏÒÍÕÌ, ËÁÖÄÁÑ ÉÚ ËÏÔÏÒÙÈ Ñ×ÌÑÅÔÓÑ ÁËÓÉÏÍÏÊ,
ÐÒÉÎÁÄÌÅÖÉÔ • ÉÌÉ ÐÏÌÕÞÁÅÔÓÑ ÉÚ ÐÒÅÄÙÄÕÝÉÈ ÐÏ ÐÒÁ×ÉÌÕ MP. (äÒÕÇÉÍÉ
ÓÌÏ×ÁÍÉ, ÍÙ ËÁË ÂÙ ÄÏÂÁ×ÌÑÅÍ ÆÏÒÍÕÌÙ ÉÚ • Ë ÁËÓÉÏÍÁÍ ÉÓÞÉÓÌÅÎÉÑ ×Ù-
ÓËÁÚÙ×ÁÎÉÊ ¡ ÉÍÅÎÎÏ ËÁË ÆÏÒÍÕÌÙ, Á ÎÅ ËÁË ÓÈÅÍÙ ÁËÓÉÏÍ.) æÏÒÍÕÌÁ A
×Ù×ÏÄÉÍÁ ÉÚ •, ÅÓÌÉ ÓÕÝÅÓÔ×ÕÅÔ ×Ù×ÏÄ ÉÚ •, × ËÏÔÏÒÏÍ ÏÎÁ Ñ×ÌÑÅÔÓÑ ÐÏ-
ÓÌÅÄÎÅÊ ÆÏÒÍÕÌÏÊ. ÷ ÜÔÏÍ ÓÌÕÞÁÅ ÍÙ ÐÉÛÅÍ • ` A. åÓÌÉ • ÐÕÓÔÏ, ÔÏ ÒÅÞØ
ÉÄ¾Ô Ï ×Ù×ÏÄÉÍÏÓÔÉ × ÉÓÞÉÓÌÅÎÉÉ ×ÙÓËÁÚÙ×ÁÎÉÊ, É ×ÍÅÓÔÏ ∅ ` A ÐÉÛÕÔ
ÐÒÏÓÔÏ ` A.
   ìÅÍÍÁ 2 (Ï ÄÅÄÕËÃÉÉ). ðÕÓÔØ • ¡ ÍÎÏÖÅÓÔ×Ï ÆÏÒÍÕÌ. ôÏÇÄÁ • ` A → B
ÔÏÇÄÁ É ÔÏÌØËÏ ÔÏÇÄÁ, ËÏÇÄÁ • ∪ {A} ` B.
   ÷ ÏÄÎÕ ÓÔÏÒÏÎÕ ÕÔ×ÅÒÖÄÅÎÉÅ ÐÏÞÔÉ ÏÞÅ×ÉÄÎÏ: ÐÕÓÔØ • ` (A → B). ôÏÇÄÁ
É •, A ` (A → B). (äÌÑ ËÒÁÔËÏÓÔÉ ÍÙ ÏÐÕÓËÁÅÍ ÆÉÇÕÒÎÙÅ ÓËÏÂËÉ É ÚÁÍÅ-
ÎÑÅÍ ÚÎÁË ÏÂßÅÄÉÎÅÎÉÑ ÚÁÐÑÔÏÊ.) ðÏ ÏÐÒÅÄÅÌÅÎÉÀ •, A ` A, ÏÔËÕÄÁ ÐÏ MP
ÐÏÌÕÞÁÅÍ •, A ` B.
   ðÕÓÔØ ÔÅÐÅÒØ •, A ` B. îÁÍ ÎÁÄÏ ÐÏÓÔÒÏÉÔØ ×Ù×ÏÄ ÆÏÒÍÕÌÙ A → B ÉÚ •.
÷ÏÚØÍ¾Í ×Ù×ÏÄ C1 , C2, . . . , Cn ÆÏÒÍÕÌÙ B = Cn ÉÚ •, A. ðÒÉÐÉÛÅÍ ËÏ ×ÓÅÍ