ВУЗ:
Составители:
Рубрика:
136 çÌÁ×Á IV. ðÏÓÔÒÏÅÎÉÅ ÇÒÁÆÉËÏ× ÆÕÎËÃÉÊ
îÁ ÉÎÔÅÒ×ÁÌÁÈ
−∞; −
1
√
3
É
1
√
3
; +∞
ÆÕÎËÃÉÑ ×ÙÐÕËÌÁ ×ÎÉÚ, Á ÎÁ ÉÎ-
ÔÅÒ×ÁÌÅ
−
1
√
3
;
1
√
3
¡ ×ÙÐÕËÌÁ ××ÅÒÈ. ÷ ÔÏÞËÁÈ x = −
1
√
3
É x =
1
√
3
ÆÕÎËÃÉÑ
ÉÍÅÅÔ ÐÅÒÅÇÉÂÙ.
4. îÁÈÏÄÉÍ ÏÒÄÉÎÁÔÙ ÔÏÞÅË ÐÅÒÅÇÉÂÁ: y
−
1
√
3
=
3
4
É y
1
√
3
=
3
4
.
ðÒÉÍÅÒ 12. îÁÊÔÉ ÉÎÔÅÒ×ÁÌÙ ×ÙÐÕËÌÏÓÔÉ É ÔÏÞËÉ ÐÅÒÅÇÉÂÁ ÆÕÎËÃÉÉ
y =
3
√
x
2
− 1.
òÅÛÅÎÉÅ. 1. îÁÈÏÄÉÍ ×ÔÏÒÕÀ ÐÒÏÉÚ×ÏÄÎÕÀ: y
00
= −
2
9
·
x
2
+3
(x
2
−1)
5/3
.
2. ÷ ÔÏÞËÁÈ x = −1 É x = 1 ×ÔÏÒÁÑ ÐÒÏÉÚ×ÏÄÎÁÑ ÎÅ ÓÕÝÅÓÔ×ÕÅÔ (ÚÎÁÍÅ-
ÎÁÔÅÌØ ÏÂÒÁÝÁÅÔÓÑ × ÎÕÌØ). õÞÉÔÙ×ÁÑ Åݾ, ÞÔÏ ÎÉ × ÏÄÎÏÊ ÔÏÞËÅ ×ÔÏÒÁÑ
ÐÒÏÉÚ×ÏÄÎÁÑ × ÎÕÌØ ÎÅ ÏÂÒÁÝÁÅÔÓÑ, ÄÅÌÁÅÍ ×Ù×ÏÄ, ÞÔÏ ËÒÉÔÉÞÅÓËÉÍÉ ÔÏÞ-
ËÁÍÉ ×ÔÏÒÏÇÏ ÒÏÄÁ Ñ×ÌÑÀÔÓÑ Ä×Å ÔÏÞËÉ: x = −1 É x = 1.
3. òÅÛÁÅÍ ÎÅÒÁ×ÅÎÓÔ×Á y
00
> 0 É y
00
< 0. éÍÅÅÍ: y
00
> 0 ÉÌÉ −
2
9
·
x
2
+3
(x
2
−1)
5/3
> 0,
ÏÔËÕÄÁ −1 < x < 1; y
00
< 0, ÏÔËÕÄÁ x < −1, x > 1. òÉÓÕÅÍ ÓÈÅÍÕ.
îÁ ÉÎÔÅÒ×ÁÌÁÈ (−∞; −1) É (1; +∞) ÆÕÎËÃÉÑ ×ÙÐÕËÌÁ ××ÅÒÈ, Á ÎÁ ÉÎÔÅÒ-
×ÁÌÅ (−1; 1) ¡ ×ÙÐÕËÌÁ ×ÎÉÚ. ôÏÞËÉ x = −1 É x = 1 Ñ×ÌÑÀÔÓÑ ÔÏÞËÁÍÉ
ÐÅÒÅÇÉÂÁ ÆÕÎËÃÉÉ.
4. îÁÈÏÄÉÍ ÏÒÄÉÎÁÔÙ ÔÏÞÅË ÐÅÒÅÇÉÂÁ: y(−1) = 0 É y(1) = 0.
§18. ðÏÌÎÏÅ ÉÓÓÌÅÄÏ×ÁÎÉÅ ÆÕÎËÃÉÉ É ÐÏÓÔÒÏÅÎÉŠž
ÇÒÁÆÉËÁ
ðÏÌÎÏÅ ÉÓÓÌÅÄÏ×ÁÎÉÅ ÆÕÎËÃÉÉ É ÐÏÓÔÒÏÅÎÉŠž ÇÒÁÆÉËÁ ÒÅËÏÍÅÎÄÕÅÔÓÑ
ÐÒÏ×ÏÄÉÔØ ÐÏ ÓÌÅÄÕÀÝÅÊ ÓÈÅÍÅ.
1. îÁÊÔÉ ÏÂÌÁÓÔØ ÏÐÒÅÄÅÌÅÎÉÑ ÆÕÎËÃÉÉ.
2. éÓÓÌÅÄÏ×ÁÔØ ÆÕÎËÃÉÀ ÎÁ ÐÅÒÉÏÄÉÞÎÏÓÔØ.
3. éÓÓÌÅÄÏ×ÁÔØ ÆÕÎËÃÉÀ ÎÁ Þ¾ÔÎÏÓÔØ É ÎÅÞ¾ÔÎÏÓÔØ.
4. îÁÊÔÉ ÔÏÞËÉ ÐÅÒÅÓÅÞÅÎÉÑ ÇÒÁÆÉËÁ ÆÕÎËÃÉÉ Ó ÏÓÑÍÉ ËÏÏÒÄÉÎÁÔ É
ÏÐÒÅÄÅÌÉÔØ ÉÎÔÅÒ×ÁÌÙ ÚÎÁËÏÐÏÓÔÏÑÎÓÔ×Á ÆÕÎËÃÉÉ.
5. îÁÊÔÉ ÔÏÞËÉ ÒÁÚÒÙ×Á ÆÕÎËÃÉÉ É ÕÓÔÁÎÏ×ÉÔØ ÈÁÒÁËÔÅÒ ÒÁÚÒÙ×Á; ÉÓ-
ÓÌÅÄÏ×ÁÔØ ÐÏ×ÅÄÅÎÉÅ ÆÕÎËÃÉÉ ÎÁ ÇÒÁÎÉÃÅ ÏÂÌÁÓÔÉ ÏÐÒÅÄÅÌÅÎÉÑ; ÎÁÊÔÉ
ÁÓÉÍÐÔÏÔÙ.
136 çÌÁ×Á IV. ðÏÓÔÒÏÅÎÉÅ ÇÒÁÆÉËÏ× ÆÕÎËÃÉÊ 1 1 îÁ ÉÎÔÅÒ×ÁÌÁÈ −∞; − √3 É √3 ; +∞ ÆÕÎËÃÉÑ ×ÙÐÕËÌÁ ×ÎÉÚ, Á ÎÁ ÉÎ- 1 ÔÅÒ×ÁÌÅ − √3 ; √3 ¡ ×ÙÐÕËÌÁ ××ÅÒÈ. ÷ ÔÏÞËÁÈ x = − √13 É x = √13 ÆÕÎËÃÉÑ 1 ÉÍÅÅÔ ÐÅÒÅÇÉÂÙ. 4. îÁÈÏÄÉÍ ÏÒÄÉÎÁÔÙ ÔÏÞÅË ÐÅÒÅÇÉÂÁ: y − √3 = 4 É y √13 = 43 . 1 3 ðÒÉÍÅÒ √ 12. îÁÊÔÉ ÉÎÔÅÒ×ÁÌÙ ×ÙÐÕËÌÏÓÔÉ É ÔÏÞËÉ ÐÅÒÅÇÉÂÁ ÆÕÎËÃÉÉ 3 y = x2 − 1. 2 òÅÛÅÎÉÅ. 1. îÁÈÏÄÉÍ ×ÔÏÒÕÀ ÐÒÏÉÚ×ÏÄÎÕÀ: y 00 = − 29 · (x2x−1) +3 5/3 . 2. ÷ ÔÏÞËÁÈ x = −1 É x = 1 ×ÔÏÒÁÑ ÐÒÏÉÚ×ÏÄÎÁÑ ÎÅ ÓÕÝÅÓÔ×ÕÅÔ (ÚÎÁÍÅ- ÎÁÔÅÌØ ÏÂÒÁÝÁÅÔÓÑ × ÎÕÌØ). õÞÉÔÙ×ÁÑ Åݾ, ÞÔÏ ÎÉ × ÏÄÎÏÊ ÔÏÞËÅ ×ÔÏÒÁÑ ÐÒÏÉÚ×ÏÄÎÁÑ × ÎÕÌØ ÎÅ ÏÂÒÁÝÁÅÔÓÑ, ÄÅÌÁÅÍ ×Ù×ÏÄ, ÞÔÏ ËÒÉÔÉÞÅÓËÉÍÉ ÔÏÞ- ËÁÍÉ ×ÔÏÒÏÇÏ ÒÏÄÁ Ñ×ÌÑÀÔÓÑ Ä×Å ÔÏÞËÉ: x = −1 É x = 1. 2 3. òÅÛÁÅÍ ÎÅÒÁ×ÅÎÓÔ×Á y 00 > 0 É y 00 < 0. éÍÅÅÍ: y 00 > 0 ÉÌÉ − 92 · (x2x−1) +3 5/3 > 0, ÏÔËÕÄÁ −1 < x < 1; y 00 < 0, ÏÔËÕÄÁ x < −1, x > 1. òÉÓÕÅÍ ÓÈÅÍÕ. îÁ ÉÎÔÅÒ×ÁÌÁÈ (−∞; −1) É (1; +∞) ÆÕÎËÃÉÑ ×ÙÐÕËÌÁ ××ÅÒÈ, Á ÎÁ ÉÎÔÅÒ- ×ÁÌÅ (−1; 1) ¡ ×ÙÐÕËÌÁ ×ÎÉÚ. ôÏÞËÉ x = −1 É x = 1 Ñ×ÌÑÀÔÓÑ ÔÏÞËÁÍÉ ÐÅÒÅÇÉÂÁ ÆÕÎËÃÉÉ. 4. îÁÈÏÄÉÍ ÏÒÄÉÎÁÔÙ ÔÏÞÅË ÐÅÒÅÇÉÂÁ: y(−1) = 0 É y(1) = 0. §18. ðÏÌÎÏÅ ÉÓÓÌÅÄÏ×ÁÎÉÅ ÆÕÎËÃÉÉ É ÐÏÓÔÒÏÅÎÉŠž ÇÒÁÆÉËÁ ðÏÌÎÏÅ ÉÓÓÌÅÄÏ×ÁÎÉÅ ÆÕÎËÃÉÉ É ÐÏÓÔÒÏÅÎÉŠž ÇÒÁÆÉËÁ ÒÅËÏÍÅÎÄÕÅÔÓÑ ÐÒÏ×ÏÄÉÔØ ÐÏ ÓÌÅÄÕÀÝÅÊ ÓÈÅÍÅ. 1. îÁÊÔÉ ÏÂÌÁÓÔØ ÏÐÒÅÄÅÌÅÎÉÑ ÆÕÎËÃÉÉ. 2. éÓÓÌÅÄÏ×ÁÔØ ÆÕÎËÃÉÀ ÎÁ ÐÅÒÉÏÄÉÞÎÏÓÔØ. 3. éÓÓÌÅÄÏ×ÁÔØ ÆÕÎËÃÉÀ ÎÁ Þ¾ÔÎÏÓÔØ É ÎÅÞ¾ÔÎÏÓÔØ. 4. îÁÊÔÉ ÔÏÞËÉ ÐÅÒÅÓÅÞÅÎÉÑ ÇÒÁÆÉËÁ ÆÕÎËÃÉÉ Ó ÏÓÑÍÉ ËÏÏÒÄÉÎÁÔ É ÏÐÒÅÄÅÌÉÔØ ÉÎÔÅÒ×ÁÌÙ ÚÎÁËÏÐÏÓÔÏÑÎÓÔ×Á ÆÕÎËÃÉÉ. 5. îÁÊÔÉ ÔÏÞËÉ ÒÁÚÒÙ×Á ÆÕÎËÃÉÉ É ÕÓÔÁÎÏ×ÉÔØ ÈÁÒÁËÔÅÒ ÒÁÚÒÙ×Á; ÉÓ- ÓÌÅÄÏ×ÁÔØ ÐÏ×ÅÄÅÎÉÅ ÆÕÎËÃÉÉ ÎÁ ÇÒÁÎÉÃÅ ÏÂÌÁÓÔÉ ÏÐÒÅÄÅÌÅÎÉÑ; ÎÁÊÔÉ ÁÓÉÍÐÔÏÔÙ.
Страницы
- « первая
- ‹ предыдущая
- …
- 134
- 135
- 136
- 137
- 138
- …
- следующая ›
- последняя »