Сборник задач по высшей математике. Часть II. Пределы. Производные. Графики функций. Самохин А.В - 66 стр.

UptoLike

Рубрика: 

66 çÌÁ×Á III. äÉÆÆÅÒÅÎÃÉÁÌØÎÏÅ ÉÓÞÉÓÌÅÎÉÅ
ÔÏ y(x
0
) =
1
x
0
É y(x
0
+ 4x) =
1
x
0
+4x
, ÐÏÜÔÏÍÕ
4 y(x
0
) = y(x
0
+ 4x) y(x
0
) =
1
x
0
+ 4x
1
x
0
=
=
x
0
(x
0
+ 4x)
x
0
(x
0
+ 4x)
=
4 x
x
0
(x
0
+ 4x)
.
ïÔÓÀÄÁ,
4y(x
0
)
4x
=
−4x
x
0
(x
0
+4x)
4x
=
1
x
0
(x
0
+ 4x)
.
óÌÅÄÏ×ÁÔÅÌØÎÏ,
y
0
(x
0
) = lim
4x0
4y(x
0
)
4x
= lim
4x0
1
x
0
(x
0
+ 4x)
= lim
4x0
1
x
2
0
+ x
0
4 x
=
1
x
2
0
.
ôÁË ËÁË × ËÁÞÅÓÔ×Å x
0
ÍÏÖÎÏ ×ÚÑÔØ ÌÀÂÏÅ ÞÉÓÌÏ ÎÅÒÁ×ÎÏÅ ÎÕÌÀ, ÔÏ ÄÌÑ
ÌÀÂÏÇÏ ÞÉÓÌÁ x 6= 0 ÐÏÌÕÞÁÅÍ
y
0
(x) =
1
x
0
=
1
x
2
.
îÁÐÒÉÍÅÒ, y
0
(2) =
1
(2)
2
=
1
4
.
ðÒÉÍÅÒ 2. îÁÊÔÉ ÐÏ ÏÐÒÅÄÅÌÅÎÉÀ ÐÒÏÉÚ×ÏÄÎÕÀ ÆÕÎËÃÉÉ y = sin x.
òÅÛÅÎÉÅ. úÁÆÉËÓÉÒÕÅÍ ÐÒÏÉÚ×ÏÌØÎÕÀ ÔÏÞËÕ x
0
. ôÁË ËÁË y(x) = sin x,
ÔÏ y(x
0
) = sin x
0
É y(x
0
+ 4x) = sin(x
0
+ 4x), ÐÏÜÔÏÍÕ
4y(x
0
) = y(x
0
+ 4x) y(x
0
) = sin(x
0
+ 4x) sin x
0
.
óÌÅÄÏ×ÁÔÅÌØÎÏ,
4y(x
0
)
4x
=
sin(x
0
+ 4x) sin x
0
4x
=
=
2 sin
4x
2
cos
x
0
+
4x
2
4x
=
sin
4x
2
4x
2
cos
x
0
+
4x
2
.
÷ÏÓÐÏÌØÚÏ×Á×ÛÉÓØ ÎÅÐÒÅÒÙ×ÎÏÓÔØÀ ÆÕÎËÃÉÉ sin x É ÐÅÒ×ÙÍ ÚÁÍÅÞÁÔÅÌØÎÙÍ
ÐÒÅÄÅÌÏÍ
lim
4x0
sin
4x
2
4x
2
= lim
α0
sin α
α
= 1,
ÐÏÌÕÞÁÅÍ
y
0
(x
0
) = lim
4x0
4y(x
0
)
4x
= 1 · cos x
0
= cos x
0
.
66                                       çÌÁ×Á III. äÉÆÆÅÒÅÎÃÉÁÌØÎÏÅ ÉÓÞÉÓÌÅÎÉÅ
              1                        1
ÔÏ y(x0 ) =   x0
                   É y(x0 + 4x) =   x0 +4x
                                           ,   ÐÏÜÔÏÍÕ

                                              1      1
     4 y(x0) = y(x0 + 4x) − y(x0) =               −    =
                                          x0 + 4x x0
                                                  x0 − (x0 + 4x)       −4x
                                                =                =              .
                                                    x0(x0 + 4x)    x0 (x0 + 4x)
ïÔÓÀÄÁ,
                                        −4x
                        4y(x0 )     x0 (x0 +4x)              1
                                =                 =−               .
                         4x              4x            x0(x0 + 4x)
óÌÅÄÏ×ÁÔÅÌØÎÏ,
                                       
 0           4y(x0)               1                    1         1
y (x0) = lim        = lim −               = − lim 2           = − 2.
        4x→0  4x     4x→0   x0(x0 + 4x)      4x→0 x0 + x0 4 x    x0
ôÁË ËÁË × ËÁÞÅÓÔ×Å x0 ÍÏÖÎÏ ×ÚÑÔØ ÌÀÂÏÅ ÞÉÓÌÏ ÎÅÒÁ×ÎÏÅ ÎÕÌÀ, ÔÏ ÄÌÑ
ÌÀÂÏÇÏ ÞÉÓÌÁ x 6= 0 ÐÏÌÕÞÁÅÍ
                                   0
                           0       1      1
                          y (x) =      = − 2.
                                   x      x
                          1      1
îÁÐÒÉÍÅÒ, y 0 (−2) = − (−2) 2 = −4.

   ðÒÉÍÅÒ 2. îÁÊÔÉ ÐÏ ÏÐÒÅÄÅÌÅÎÉÀ ÐÒÏÉÚ×ÏÄÎÕÀ ÆÕÎËÃÉÉ y = sin x.
   òÅÛÅÎÉÅ. úÁÆÉËÓÉÒÕÅÍ ÐÒÏÉÚ×ÏÌØÎÕÀ ÔÏÞËÕ x0. ôÁË ËÁË y(x) = sin x,
ÔÏ y(x0 ) = sin x0 É y(x0 + 4x) = sin(x0 + 4x), ÐÏÜÔÏÍÕ
              4y(x0) = y(x0 + 4x) − y(x0) = sin(x0 + 4x) − sin x0 .
óÌÅÄÏ×ÁÔÅÌØÎÏ,
 4y(x0 ) sin(x0 + 4x) − sin x0
        =                      =
  4x              4x
                                                             
                                         4x              4x
                                 2 sin    2   cos x0 +    2           sin 4x
                                                                                  
                                                                                        4x
                                                                                           
                                                                           2
                             =                                    =    4x
                                                                               cos x0 +      .
                                               4x                       2
                                                                                         2
÷ÏÓÐÏÌØÚÏ×Á×ÛÉÓØ ÎÅÐÒÅÒÙ×ÎÏÓÔØÀ ÆÕÎËÃÉÉ sin x É ÐÅÒ×ÙÍ ÚÁÍÅÞÁÔÅÌØÎÙÍ
ÐÒÅÄÅÌÏÍ
                             sin 4x       sin α
                         lim 4x2 = lim           = 1,
                        4x→0          α→0 α
                                2
ÐÏÌÕÞÁÅÍ
                               4y(x0)
               y 0 (x0) = lim          = 1 · cos x0 = cos x0.
                          4x→0    4x