Сборник задач по высшей математике. Часть II. Пределы. Производные. Графики функций. Самохин А.В - 81 стр.

UptoLike

Рубрика: 

§9. ðÒÏÉÚ×ÏÄÎÙÅ É ÄÉÆÆÅÒÅÎÃÉÁÌÙ ×ÙÓÛÉÈ ÐÏÒÑÄËÏ× 81
8.3. éÎ×ÁÒÉÁÎÔÎÏÓÔØ ÆÏÒÍÙ ÐÅÒ×ÏÇÏ ÄÉÆÆÅÒÅÎÃÉÁÌÁ
çÌÁ×ÎÙÍ Ó×ÏÊÓÔ×ÏÍ ÄÉÆÆÅÒÅÎÃÉÁÌÁ Ñ×ÌÑÅÔÓÑ ÉÎ×ÁÒÉÁÎÔÎÏÓÔØ ÅÉÚÍÅÎ-
ÎÏÓÔØ) ÅÇÏ ÆÏÒÍÙ ÏÔÎÏÓÉÔÅÌØÎÏ ÚÁÍÅÎÙ ÐÅÒÅÍÅÎÎÙÈ. åÓÌÉ y = y(x), x =
= x(t), ÔÏ
dy = y
0
t
dt = y
0
x
dx.
üÔÏ Ó×ÏÊÓÔ×Ï ÎÁÚÙ×ÁÅÔÓÑ Ó×ÏÊÓÔ×ÏÍ ÉÎ×ÁÒÉÁÎÔÎÏÓÔÉ ÆÏÒÍÙ ÐÅÒ×ÏÇÏ ÄÉÆ-
ÆÅÒÅÎÃÉÁÌÁ ÏÔÎÏÓÉÔÅÌØÎÏ ÚÁÍÅÎÙ ÁÒÇÕÍÅÎÔÁ.
úÁÄÁÞÉ ÄÌÑ ÓÁÍÏÓÔÏÑÔÅÌØÎÏÇÏ ÒÅÛÅÎÉÑ
îÁÊÔÉ ÄÉÆÆÅÒÅÎÃÉÁÌ ÆÕÎËÃÉÉ:
514. y = x
5
;
515. y = tg x;
516. y = sin
3
2x;
517. y = ln x;
518. y = ln (sin
x);
519. y = e
1
cos x
;
520. y = 2
x
2
.
îÁÊÔÉ ÄÉÆÆÅÒÅÎÃÉÁÌ ÆÕÎËÃÉÉ × ÔÏÞËÅ x
0
:
521. y = x
4
, x
0
= 1;
522. y = x
3
3x
2
+ 3x, x
0
= 0;
523. y =
1 + x
2
, x
0
= 3;
524. y =
1
x
1
x
2
, x
0
= 2;
525. y = ln cos x, x
0
=
π
4
;
526. y = e
2x
, x
0
=
1
2
;
527. y =
x + 1, x
0
= 4;
528. y = arctg
4x 1, x
0
= 3.
§9. ðÒÏÉÚ×ÏÄÎÙÅ É ÄÉÆÆÅÒÅÎÃÉÁÌÙ ×ÙÓÛÉÈ ÐÏÒÑÄËÏ×
9.1. ðÏÎÑÔÉÅ ÐÒÏÉÚ×ÏÄÎÏÊ nÏ ÐÏÒÑÄËÁ
ðÒÏÉÚ×ÏÄÎÁÑ f
0
(x) ÆÕÎËÃÉÉ y = f(x) ÓÁÍÁ Ñ×ÌÑÅÔÓÑ ÆÕÎËÃÉÅÊ ÁÒÇÕÍÅÎ-
ÔÁ x. óÌÅÄÏ×ÁÔÅÌØÎÏ, ÐÏ ÏÔÎÏÛÅÎÉÀ Ë ÎÅÊ ÓÎÏ×Á ÍÏÖÎÏ ÓÔÁ×ÉÔØ ×ÏÐÒÏÓ Ï
ÓÕÝÅÓÔ×Ï×ÁÎÉÉ É ÎÁÈÏÖÄÅÎÉÉ ÐÒÏÉÚ×ÏÄÎÏÊ.
îÁÚÏ×¾Í f
0
(x) ÐÒÏÉÚ×ÏÄÎÏÊ ÐÅÒ×ÏÇÏ ÐÏÒÑÄËÁ ÆÕÎËÃÉÉ f(x).
ðÒÏÉÚ×ÏÄÎÁÑ ÏÔ ÐÒÏÉÚ×ÏÄÎÏÊ ÎÅËÏÔÏÒÏÊ ÆÕÎËÃÉÉ ÎÁÚÙ×ÁÅÔÓÑ ÐÒÏÉÚ×ÏÄÎÏÊ
×ÔÏÒÏÇÏ ÐÏÒÑÄËÁ (ÉÌÉ ×ÔÏÒÏÊ ÐÒÏÉÚ×ÏÄÎÏÊ) ÜÔÏÊ ÆÕÎËÃÉÉ. ðÒÏÉÚ×ÏÄÎÁÑ ÏÔ
§9. ðÒÏÉÚ×ÏÄÎÙÅ É ÄÉÆÆÅÒÅÎÃÉÁÌÙ ×ÙÓÛÉÈ ÐÏÒÑÄËÏ×                     81

8.3. éÎ×ÁÒÉÁÎÔÎÏÓÔØ ÆÏÒÍÙ ÐÅÒ×ÏÇÏ ÄÉÆÆÅÒÅÎÃÉÁÌÁ

   çÌÁ×ÎÙÍ Ó×ÏÊÓÔ×ÏÍ ÄÉÆÆÅÒÅÎÃÉÁÌÁ Ñ×ÌÑÅÔÓÑ ÉÎ×ÁÒÉÁÎÔÎÏÓÔØ (ÎÅÉÚÍÅÎ-
ÎÏÓÔØ) ÅÇÏ ÆÏÒÍÙ ÏÔÎÏÓÉÔÅÌØÎÏ ÚÁÍÅÎÙ ÐÅÒÅÍÅÎÎÙÈ. åÓÌÉ y = y(x), x =
= x(t), ÔÏ
                          dy = yt0 dt = yx0 dx.
üÔÏ Ó×ÏÊÓÔ×Ï ÎÁÚÙ×ÁÅÔÓÑ Ó×ÏÊÓÔ×ÏÍ ÉÎ×ÁÒÉÁÎÔÎÏÓÔÉ ÆÏÒÍÙ ÐÅÒ×ÏÇÏ ÄÉÆ-
ÆÅÒÅÎÃÉÁÌÁ ÏÔÎÏÓÉÔÅÌØÎÏ ÚÁÍÅÎÙ ÁÒÇÕÍÅÎÔÁ.

úÁÄÁÞÉ ÄÌÑ ÓÁÍÏÓÔÏÑÔÅÌØÎÏÇÏ ÒÅÛÅÎÉÑ

îÁÊÔÉ ÄÉÆÆÅÒÅÎÃÉÁÌ ÆÕÎËÃÉÉ:
  514. y = x5;
  515. y = tg x;
  516. y = sin3 2x;
  517. y = ln x; √
  518. y = ln (sin x);
                1
  519. y = e− cos x ;
               2
  520. y = 2−x .
îÁÊÔÉ ÄÉÆÆÅÒÅÎÃÉÁÌ ÆÕÎËÃÉÉ × ÔÏÞËÅ x0 :
  521. y = x−4, x0 = −1;
  522. y = x 3        2
           √ − 3x + 3x, x0 = 0;
  523. y = 1 + x2, x0 = −3;
  524. y = x1 − x12 , x0 = 2;
  525. y = ln cos x, x0 = π4 ;
  526. y = e−2x , x0 = − 21 ;
           √
  527. y = x +√      1, x0 = 4;
  528. y = arctg 4x − 1, x0 = 3.

§9. ðÒÏÉÚ×ÏÄÎÙÅ É ÄÉÆÆÅÒÅÎÃÉÁÌÙ ×ÙÓÛÉÈ ÐÏÒÑÄËÏ×
9.1. ðÏÎÑÔÉÅ ÐÒÏÉÚ×ÏÄÎÏÊ n-ÇÏ ÐÏÒÑÄËÁ

   ðÒÏÉÚ×ÏÄÎÁÑ f 0(x) ÆÕÎËÃÉÉ y = f (x) ÓÁÍÁ Ñ×ÌÑÅÔÓÑ ÆÕÎËÃÉÅÊ ÁÒÇÕÍÅÎ-
ÔÁ x. óÌÅÄÏ×ÁÔÅÌØÎÏ, ÐÏ ÏÔÎÏÛÅÎÉÀ Ë ÎÅÊ ÓÎÏ×Á ÍÏÖÎÏ ÓÔÁ×ÉÔØ ×ÏÐÒÏÓ Ï
ÓÕÝÅÓÔ×Ï×ÁÎÉÉ É ÎÁÈÏÖÄÅÎÉÉ ÐÒÏÉÚ×ÏÄÎÏÊ.
   îÁÚÏ×¾Í f 0(x) ÐÒÏÉÚ×ÏÄÎÏÊ ÐÅÒ×ÏÇÏ ÐÏÒÑÄËÁ ÆÕÎËÃÉÉ f (x).
   ðÒÏÉÚ×ÏÄÎÁÑ ÏÔ ÐÒÏÉÚ×ÏÄÎÏÊ ÎÅËÏÔÏÒÏÊ ÆÕÎËÃÉÉ ÎÁÚÙ×ÁÅÔÓÑ ÐÒÏÉÚ×ÏÄÎÏÊ
×ÔÏÒÏÇÏ ÐÏÒÑÄËÁ (ÉÌÉ ×ÔÏÒÏÊ ÐÒÏÉÚ×ÏÄÎÏÊ) ÜÔÏÊ ÆÕÎËÃÉÉ. ðÒÏÉÚ×ÏÄÎÁÑ ÏÔ