Современные методы исследования и описания кристаллических структур. Самойлов А.М. - 26 стр.

UptoLike

Составители: 

23
lhq_qgZy
j = 1,2 ... N/k
r’-
fh^_ev
lhq_qgh-rljboh\Zy
]jZn
rZjh\Zy
\Ze_glgZyk\yav
djbklZeehobfbq_kdb_
jZ^bmku
+ { ij }
rZjh\u_ miZdh\db b
deZ^db
r, ρ-
fh^_ev
we_dljhggZyiehlghklv
---
+ ρ ( r )
r’, δρ -
fh^_ev
^_nhjfZpbhggZy we_dljhggZy
iehlghklv
\Ze_glgu_bg_ih^_e_g-
gu_ we_dljhggu_ iZju
i_j_ghk aZjy^Z iheyjb-aZpby
Zlhfh\bbhgh\
+ δρ ( r )
<jZfdZolhq_qghc
r
-
fh^_ebkh^_j`Zlky^Zggu_hiZjZf_ljZoj_r_ldbfZkkb\
{
R }
-j_i_jj_r_ldbjZ^bmk-\_dlhju
r
j
dhhj^bgZluZlhfh\
1
bijhkljZgkl\_ggmx
n_^hjh\kdmx]jmiimkbff_ljbb
N
,
dhlhjZyiha\hey_lkqblZlvg_aZ\bkbfufblhevdh
N/k
Zlhfh\, ãäå
N
-
qbkehZlhfh\\
1
Iheh`_gb_dhhj^bgZluex[h]h maeZ \ ijhkljZgkl\_gghc j_r_ld_ hij_^_eyxlky
jZ^bmkhf-\_dlhjhf
r
j
ijh\_^_gguf
bagZqZeZdhhj^bgZlijbq_f
r
j
= ma + nb + pc,
]^_
a, b, c
-
kbkl_fZ
[Zabkguo \_dlhjh\ih dhhj^bgZlgufhkyf
OX, OY b OZ
khhl\_lkl\_ggh
m, n, p
-ljbqbkeZgZau\Z_fuobg^_dkZfbmaeZ
we_f_glZjghcyq_cd_
k
-
nZdlhjkbff_ljbb
1
.
< lZdhf \b^_ h[uqgh [u\Zxl ij_^klZ\e_gu hkgh\gu_ wdki_jbf_glZevgu_
j_amevlZlu j_gl]_ghkljmdlmjgh]h ZgZebaZIh wlbf ^Zgguf fh`gh hij_^_eylv agZq_gby
f_`iehkdhklguo b f_`ZlhfguojZkklhygbcNZdlbq_kdblZdZyfh^_ev hdZau\Z_lkyfZeh
bgnhjfZlb\ghc < kemqZ_ [he__ keh`ghc kljmdlmju hgZ ij_^klZ_l dZd oZhlbq_kdh_
gZ]jhfh`^_gb_ lhq_d ba dhlhjh]h ^hklZlhqgh ljm^gh ba\e_qv ihe_agmx bgnhjfZpbx
>ey jZkrbnjh\db lZdbo kljmdlmjg_h[oh^bfh ijbf_gylv hkgh\gu_iheh`_gby mq_gby h
obfbq_kdhck\ya bqlhijb\h^bldihy\e_gbx
r’
-fh^_eb
                                              23
lhq_qgZy                                                              j = 1,2 ... N/k
r’-fh^_ev
 lhq_qgh-rljboh\Zy ]jZn           \Ze_glgZyk\yav                            + { ij }
 rZjh\Zy                          djbklZeehobfbq_kdb_              rZjh\u_ miZdh\db b
                                    jZ^bmku
                                                                      deZ^db
r, ρ-fh^_ev
                                                   ---
we_dljhggZyiehlghklv                                                          +ρ(r)
r’, δρ - fh^_ev                     \Ze_glgu_bg_ih^_e_g-

^_nhjfZpbhggZy        we_dljhggZy gu_ we_dljhggu_ iZju                 + δρ ( r )
iehlghklv                           i_j_ghk aZjy^Z iheyjb-aZpby
                                    Zlhfh\bbhgh\


       <jZfdZolhq_qghc r - fh^_ebkh^_j`Zlky^Zggu_hiZjZf_ljZoj_r_ldb fZkkb\ {

R } -j_i_jj_r_ldb jZ^bmk-\_dlhju rj dhhj^bgZlu Zlhfh\1 bijhkljZgkl\_ggmx 
n_^hjh\kdmx ]jmiimkbff_ljbb N, dhlhjZyiha\hey_lkqblZlvg_aZ\bkbfufblhevdh

N/k Zlhfh\, ãäå N - qbkehZlhfh\\



1
    Iheh`_gb_  dhhj^bgZlu  ex[h]h maeZ \ ijhkljZgkl\_gghc j_r_ld_ hij_^_eyxlky
jZ^bmkhf-\_dlhjhfrjijh\_^_gguf bagZqZeZdhhj^bgZlijbq_frj = ma + nb + pc, ]^_

a, b, c      -   kbkl_fZ [Zabkguo \_dlhjh\ ih dhhj^bgZlguf hkyf OX, OY b OZ

khhl\_lkl\_ggh m, n, p -ljbqbkeZgZau\Z_fuobg^_dkZfbmaeZ




                                               1
we_f_glZjghcyq_cd_ k - nZdlhjkbff_ljbb .
       < lZdhf \b^_ h[uqgh [u\Zxl ij_^klZ\e_gu hkgh\gu_ wdki_jbf_glZevgu_
j_amevlZlu j_gl]_ghkljmdlmjgh]h ZgZebaZ Ih wlbf ^Zgguf fh`gh hij_^_eylv agZq_gby
f_`iehkdhklguo b f_`Zlhfguo jZkklhygbc NZdlbq_kdb lZdZyfh^_evhdZau\Z_lkyfZeh
bgnhjfZlb\ghc < kemqZ_ [he__ keh`ghc kljmdlmju hgZ ij_^klZ_l dZd oZhlbq_kdh_
gZ]jhfh`^_gb_ lhq_d ba dhlhjh]h ^hklZlhqgh ljm^gh ba\e_qv ihe_agmx bgnhjfZpbx
>ey jZkrbnjh\db lZdbo kljmdlmj g_h[oh^bfh ijbf_gylv hkgh\gu_ iheh`_gby mq_gby h
obfbq_kdhck\yabqlhijb\h^bldihy\e_gbxr’ -fh^_eb