Современные методы исследования и описания кристаллических структур. Самойлов А.М. - 5 стр.

UptoLike

Составители: 

2
FZdkbfZevgZyqZklhlZ
νν
max
fbgbfZevgZy^ebgZ\hegu
λλ
min
khhl\_lkl\m_liheghc
hklZgh\d_we_dljhgh\ (
E
2
= 0 ).
h
νν
max
= hc/
λλ
min
= E
1
= eU,
( 1.3 )
]^_
U
-mkdhjyxs__gZijy`_gb_
Ihkdhevdm
E
2
fh`_lbf_lvex[mx\_ebqbgmf_gvrmx
E
1
lhg_ij_ju\gucki_dlj
kh klhjhgu ^ebgguo \heg h]jZgbq_g ebrv ih]ehs_gb_f fy]dbo emq_c \ fZl_jbZe_
hdhrdZljm[dbb\\ha^mo_
?keb mkdhj_ggu_ we_dljhgu h[eZ^Zxl wg_j]b_c [hevr_c ihjh]Z \ha[m`^_gby l_
^hklZlhqghcqlh[u\u[blvbaZlhfZwe_dljhggZoh^ysbckygZ\gmlj_gg_ch[hehqd_gZ
nhg_ g_ij_ju\gh]h ki_dljZ\hagbdZ_l ebgby oZjZdl_jbklbq_kdh]h j_gl]_gh\kdh]h
baemq_gbyWe_dljhguZlhfZi_j_oh^yk\g_rgboh[hehq_dbf_xsbo[hevrmxwg_j]bx
E
gZ\ZdZglgh_f_klh\h\gmlj_gg_ch[hehqd_bkimkdZxlnhlhgu
h
νν
= E
E
0
( 1.4 )
<_ebqbgZ hij_^_ey_lky oZjZdl_jghc ^ey dZ`^h]h we_f_glZkbkl_fhc_]h wg_j]_lbq_kdbo
mjh\g_cEbgbbki_dljZ jZa^_eyxlkygZk_jbb
K, L, M, N ...
\aZ\bkbfhklbhllh]hk
dZdhch[hehqdb[uem^Ze_gwe_dljhg<gmljbdZ`^hck_jbbbf__lkyg_kdhevdhebgbc
αα
1
,
αα
2
...,
ββ
1
,
ββ
2
...
\ khhl\_lkl\bb k mjh\g_f k dhlhjh]h kh\_jrbeky wg_j]_lbq_kdbc
i_j_oh^
GZb[he__ bgl_gkb\gufb y\eyxlky ebgbb
K
αα
1
 i_j_oh^ we_dljhgZ
L
III
- K
I
) b
[ebadZydg_cihbgl_gkb\ghklbgh[he__keZ[Zyebgby
K
αα
2
i_j_oh^we_dljhgZ
L
II
-
K
I
).
Bgl_gkb\ghklv ebgbb
K
ββ
1
 i_j_oh^ we_dljhgZ
M
III
-
K
I
) khklZ\ey_l 
- 25 %
bgl_gkb\ghklb
K
αα
1
 >jm]b_ ebgbb bf_xl _s_ f_gvrmx bgl_gkb\ghklv QZklhlZ dZdhc
-
eb[hebgbbbaf_gy_lkyijbi_j_oh^_hlh^gh]hwe_f_glZd^jm]hfmihaZdhgmFhaeb
νν
= (Z
σσ
),
( 1.5 )
]^_
Z
-
aZjy^y^jZ
c
b
σσ
-
ihklhyggu_
< j_gl]_ghkljmdlmjghf ZgZeba_ \ dZq_kl\_ fhghojhfZlbq_kdh]h baemq_gbyqZs_
\k_]hbkihevamxlkyebgbb
K
αα
1
b
K
αα
2
f_lZeeh\hlojhfZ
Z
 ^hfheb[^_gZ
Z
=
^ebgu\hegdhlhjuoe_`Zl\bgl_j\Ze_hl^hgf
Wdki_jbf_glZevgu_ b l_hj_lbq_kdb_ hkgh\u j_gl]_ghkljmdlmjgh]h b nZah\h]h
ZgZebaZl\_j^uol_e[uebaZeh`_gu\ 
-191
 ]] \jZ[hlZo F EZmw
1
b _]h
                                                   2
      FZdkbfZevgZyqZklhlZνmax fbgbfZevgZy^ebgZ\hegu λmin khhl\_lkl\m_liheghc

hklZgh\d_we_dljhgh\ ( E2 = 0 ).

        hνmax = hc/λmin = E1 = eU,                                    ( 1.3 )

      ]^_U -mkdhjyxs__gZijy`_gb_

      Ihkdhevdm E2 fh`_lbf_lvex[mx\_ebqbgmf_gvrmx E1lhg_ij_ju\gucki_dlj
kh klhjhgu ^ebgguo \heg h]jZgbq_g ebrv ih]ehs_gb_f fy]dbo emq_c \ fZl_jbZe_
hdhrdZljm[dbb\\ha^mo_
      ?keb mkdhj_ggu_ we_dljhgu h[eZ^Zxl wg_j]b_c [hevr_c ihjh]Z \ha[m`^_gby l_
^hklZlhqghcqlh[u\u[blvbaZlhfZwe_dljhggZoh^ysbckygZ\gmlj_gg_ch[hehqd_gZ
nhg_ g_ij_ju\gh]h ki_dljZ \hagbdZ_l ebgby oZjZdl_jbklbq_kdh]h j_gl]_gh\kdh]h
baemq_gbyWe_dljhguZlhfZi_j_oh^yk\g_rgboh[hehq_dbf_xsbo[hevrmxwg_j]bx
EgZ\ZdZglgh_f_klh\h\gmlj_gg_ch[hehqd_bkimkdZxlnhlhgu
             hν = E − E0                                    ( 1.4 )
<_ebqbgZ hij_^_ey_lky oZjZdl_jghc ^ey dZ`^h]h we_f_glZ kbkl_fhc _]h wg_j]_lbq_kdbo
mjh\g_c Ebgbb ki_dljZ jZa^_eyxlky gZ k_jbb K, L, M, N ...\aZ\bkbfhklbhllh]hk

dZdhch[hehqdb[uem^Ze_gwe_dljhgjm]b_ ebgbb bf_xl _s_ f_gvrmx bgl_gkb\ghklv QZklhlZ dZdhc-
eb[hebgbbbaf_gy_lkyijbi_j_oh^_hlh^gh]hwe_f_glZd^jm]hfmihaZdhgmFhaeb

         √ ν = (Z − σ ),                                         ( 1.5 )

      ]^_Z -aZjy^y^jZcbσ -ihklhyggu_


      < j_gl]_ghkljmdlmjghf ZgZeba_ \ dZq_kl\_ fhghojhfZlbq_kdh]h baemq_gby  qZs_

\k_]hbkihevamxlkyebgbb Kα1b Kα2 f_lZeeh\hlojhfZ  Z  ^hfheb[^_gZ Z =
 ^ebgu\hegdhlhjuoe_`Zl\bgl_j\Ze_hl^hgf
      Wdki_jbf_glZevgu_ b l_hj_lbq_kdb_ hkgh\u j_gl]_ghkljmdlmjgh]h b nZah\h]h
ZgZebaZ  l\_j^uo  l_e  [ueb  aZeh`_gu  \  -191  ]]  \  jZ[hlZo F EZmw1 b _]h