ВУЗ:
Составители:
121.  Nissinen A. S., Koivisto H. Identification of multivariate Volterra series 
using genetic algorithms // Proc. Second Nordic Workshop on Genetic Algorithms 
and their Applications. −Vaasa, Finland, Aug. 1996. − P. 151−162. 
122.
  Nowak R. D. Wavelet-based transformations for nonlinear signal 
processing // IEEE Trans. on Signal Processing. − 1997. − ¹ 2. 
123.
  Nussbaumer H. J. Fast polynomial transform algorithms for digital 
convolution // IEEE Trans. Acoust., Speech and Signal Processing. − 1980. − 
V. 28. − ¹ 2. − P. 205−215. 
124.
  Palmieri F., Boucelet C. G. Frequency analysis and synthesis of a class 
of nonlinear filters // IEEE Trans. on Acoust., Speech and Signal Processing. − 1990. 
− V. 38. − ¹ 8. − P. 1363−1372. 
125.
  Papoulis A. Minimum bias window for high-resolution spectral 
estimates // IEEE Trans. Inform. Theory. − 1973. − V. 19. − ¹ 1. − P. 9−12. 
126.
  Peyton-Jones J. C., Billings S. A. Describing functions, Volterra series, 
and the analysis of non-linear systems in the frequency domain // Int. Journal of 
Control. −1991. − V. 53. − ¹ 4. − P. 871−887. 
127.
  Picinbono B., Duvaut P. Geometric properties of optimal Volterra filters 
for signal detection // IEEE Trans. on Information Theory. − 1990. − V. 36. − ¹ 5. − 
P. 1061−1068. 
128.
  Pitas I., Venetsanopoulos A. N. Nonlinear digital filters: principles and 
applications. − Kluver Academic Publishers,  1990. − 391 p. 
129.
  Pottmann M., Unbehauen H., Seborg D. E. Application of general multi-
model approach for identification of highly nonlinear processes − a case study // Int. 
Journal of Control. − 1993. − V. 57. − ¹ 1. − P. 97−120. 
130.
  Ramponi G. F. Edge extraction by class of second-order nonlinear filters 
// Electron. Lett. − 1986. − V. 22. − ¹ 8. − P. 482−484. 
131.
  Ramponi G. F., Sicuranza G. L., Ukovich W. A computational method 
for the design of 2-D nonlinear Volterra filters // IEEE Trans. on Circuits and 
Systems. − 1988. − V. 35. − ¹ 9. − P. 1095−1102. 
      121. Nissinen A. S., Koivisto H. Identification of multivariate Volterra series
using genetic algorithms // Proc. Second Nordic Workshop on Genetic Algorithms
and their Applications. −Vaasa, Finland, Aug. 1996. − P. 151−162.
      122. Nowak R. D. Wavelet-based transformations for nonlinear signal
processing // IEEE Trans. on Signal Processing. − 1997. − ¹ 2.
      123. Nussbaumer H. J. Fast polynomial transform algorithms for digital
convolution // IEEE Trans. Acoust., Speech and Signal Processing. − 1980. −
V. 28. − ¹ 2. − P. 205−215.
      124. Palmieri F., Boucelet C. G. Frequency analysis and synthesis of a class
of nonlinear filters // IEEE Trans. on Acoust., Speech and Signal Processing. − 1990.
− V. 38. − ¹ 8. − P. 1363−1372.
      125. Papoulis A. Minimum bias window for high-resolution spectral
estimates // IEEE Trans. Inform. Theory. − 1973. − V. 19. − ¹ 1. − P. 9−12.
      126. Peyton-Jones J. C., Billings S. A. Describing functions, Volterra series,
and the analysis of non-linear systems in the frequency domain // Int. Journal of
Control. −1991. − V. 53. − ¹ 4. − P. 871−887.
      127. Picinbono B., Duvaut P. Geometric properties of optimal Volterra filters
for signal detection // IEEE Trans. on Information Theory. − 1990. − V. 36. − ¹ 5. −
P. 1061−1068.
      128. Pitas I., Venetsanopoulos A. N. Nonlinear digital filters: principles and
applications. − Kluver Academic Publishers, 1990. − 391 p.
      129. Pottmann M., Unbehauen H., Seborg D. E. Application of general multi-
model approach for identification of highly nonlinear processes − a case study // Int.
Journal of Control. − 1993. − V. 57. − ¹ 1. − P. 97−120.
      130. Ramponi G. F. Edge extraction by class of second-order nonlinear filters
// Electron. Lett. − 1986. − V. 22. − ¹ 8. − P. 482−484.
      131. Ramponi G. F., Sicuranza G. L., Ukovich W. A computational method
for the design of 2-D nonlinear Volterra filters // IEEE Trans. on Circuits and
Systems. − 1988. − V. 35. − ¹ 9. − P. 1095−1102.
