ВУЗ:
Составители:
121. Nissinen A. S., Koivisto H. Identification of multivariate Volterra series
using genetic algorithms // Proc. Second Nordic Workshop on Genetic Algorithms
and their Applications. −Vaasa, Finland, Aug. 1996. − P. 151−162.
122.
Nowak R. D. Wavelet-based transformations for nonlinear signal
processing // IEEE Trans. on Signal Processing. − 1997. − ¹ 2.
123.
Nussbaumer H. J. Fast polynomial transform algorithms for digital
convolution // IEEE Trans. Acoust., Speech and Signal Processing. − 1980. −
V. 28. − ¹ 2. − P. 205−215.
124.
Palmieri F., Boucelet C. G. Frequency analysis and synthesis of a class
of nonlinear filters // IEEE Trans. on Acoust., Speech and Signal Processing. − 1990.
− V. 38. − ¹ 8. − P. 1363−1372.
125.
Papoulis A. Minimum bias window for high-resolution spectral
estimates // IEEE Trans. Inform. Theory. − 1973. − V. 19. − ¹ 1. − P. 9−12.
126.
Peyton-Jones J. C., Billings S. A. Describing functions, Volterra series,
and the analysis of non-linear systems in the frequency domain // Int. Journal of
Control. −1991. − V. 53. − ¹ 4. − P. 871−887.
127.
Picinbono B., Duvaut P. Geometric properties of optimal Volterra filters
for signal detection // IEEE Trans. on Information Theory. − 1990. − V. 36. − ¹ 5. −
P. 1061−1068.
128.
Pitas I., Venetsanopoulos A. N. Nonlinear digital filters: principles and
applications. − Kluver Academic Publishers, 1990. − 391 p.
129.
Pottmann M., Unbehauen H., Seborg D. E. Application of general multi-
model approach for identification of highly nonlinear processes − a case study // Int.
Journal of Control. − 1993. − V. 57. − ¹ 1. − P. 97−120.
130.
Ramponi G. F. Edge extraction by class of second-order nonlinear filters
// Electron. Lett. − 1986. − V. 22. − ¹ 8. − P. 482−484.
131.
Ramponi G. F., Sicuranza G. L., Ukovich W. A computational method
for the design of 2-D nonlinear Volterra filters // IEEE Trans. on Circuits and
Systems. − 1988. − V. 35. − ¹ 9. − P. 1095−1102.
121. Nissinen A. S., Koivisto H. Identification of multivariate Volterra series using genetic algorithms // Proc. Second Nordic Workshop on Genetic Algorithms and their Applications. −Vaasa, Finland, Aug. 1996. − P. 151−162. 122. Nowak R. D. Wavelet-based transformations for nonlinear signal processing // IEEE Trans. on Signal Processing. − 1997. − ¹ 2. 123. Nussbaumer H. J. Fast polynomial transform algorithms for digital convolution // IEEE Trans. Acoust., Speech and Signal Processing. − 1980. − V. 28. − ¹ 2. − P. 205−215. 124. Palmieri F., Boucelet C. G. Frequency analysis and synthesis of a class of nonlinear filters // IEEE Trans. on Acoust., Speech and Signal Processing. − 1990. − V. 38. − ¹ 8. − P. 1363−1372. 125. Papoulis A. Minimum bias window for high-resolution spectral estimates // IEEE Trans. Inform. Theory. − 1973. − V. 19. − ¹ 1. − P. 9−12. 126. Peyton-Jones J. C., Billings S. A. Describing functions, Volterra series, and the analysis of non-linear systems in the frequency domain // Int. Journal of Control. −1991. − V. 53. − ¹ 4. − P. 871−887. 127. Picinbono B., Duvaut P. Geometric properties of optimal Volterra filters for signal detection // IEEE Trans. on Information Theory. − 1990. − V. 36. − ¹ 5. − P. 1061−1068. 128. Pitas I., Venetsanopoulos A. N. Nonlinear digital filters: principles and applications. − Kluver Academic Publishers, 1990. − 391 p. 129. Pottmann M., Unbehauen H., Seborg D. E. Application of general multi- model approach for identification of highly nonlinear processes − a case study // Int. Journal of Control. − 1993. − V. 57. − ¹ 1. − P. 97−120. 130. Ramponi G. F. Edge extraction by class of second-order nonlinear filters // Electron. Lett. − 1986. − V. 22. − ¹ 8. − P. 482−484. 131. Ramponi G. F., Sicuranza G. L., Ukovich W. A computational method for the design of 2-D nonlinear Volterra filters // IEEE Trans. on Circuits and Systems. − 1988. − V. 35. − ¹ 9. − P. 1095−1102.