Идентификация объектов управления. Семенов А.Д - 215 стр.

UptoLike

132. Ramponi G. F., Fontanot P. Enhancing document images with a
quadratic filter // Signal Processing. 1993. V. 33. ¹ 1. P. 2334.
133.
Rugh W. J. Nonlinear System Theory. The Volterra/Wiener Approach.
Baltimore and London: The Johns Hopkins University Press, 1981. 325 p.
134.
Schetzen M. The Volterra and Wiener theory of nonlinear systems.
New York: John Wiley, 1980. 527 p.
135.
Schulz-Mirbach H. The Volterra theory of nonlinear systems and
algorithms for construction of invariant image features. Tech. report. Technical
University of Hamburg-Harburg, October 1996. 12 p.
136.
Sicuranza G. L., Ramponi G. Theory and realization of M-D nonlinear
digital filters // Proc. of the IEEE Int. Conf. Acoust., Speech and Signal Processing,
Tokyo, Japan, Apr. 1986. P. 10611064.
137.
Stapleton J. C., Bass S. C. Adaptive noise cancellation for a class of
nonlinear, dynamic reference channels // IEEE Trans. on Circuits and Systems.
1985. V. 35. ¹ 2. P. 143150.
138.
Uppala S. V., Sahr J. D. On the design of the quadratic filters with
application to image processing // IEEE Trans. on Image Processing. 1997. V. 6.
¹ 4. P. 608616.
139.
Yasui S. Stochastic functional Fourier series, Volterra series, and
nonlinear systems analysis // IEEE Trans. on Automatic Control. 1979. V. 24. ¹
2. P. 230242.
140.
Yin L., Astola J., Neuvo Y. A new class of nonlinear filters-neural filters
// IEEE Trans. on Signal Processing. 1993. V. 41. ¹ 3. P. 12011222.
141.
Zaknich A., Attikiouzel Y. Application of artificial neural networks to
nonlinear signal processing, Computational Intelligence: A dynamic System
Perspective // IEEE Press, November, 1995. P. 292311.
      132. Ramponi G. F., Fontanot P. Enhancing document images with a
quadratic filter // Signal Processing. − 1993. − V. 33. − ¹ 1. − P. 23−34.
      133. Rugh W. J. Nonlinear System Theory. The Volterra/Wiener Approach.
−Baltimore and London: The Johns Hopkins University Press, 1981. − 325 p.
      134. Schetzen M. The Volterra and Wiener theory of nonlinear systems. −
New York: John Wiley, 1980. − 527 p.
      135. Schulz-Mirbach H. The Volterra theory of nonlinear systems and
algorithms for construction of invariant image features. Tech. report. Technical
University of Hamburg-Harburg, October 1996. − 12 p.
      136. Sicuranza G. L., Ramponi G. Theory and realization of M-D nonlinear
digital filters // Proc. of the IEEE Int. Conf. Acoust., Speech and Signal Processing,
Tokyo, Japan, Apr. 1986. − P. 1061−1064.
      137. Stapleton J. C., Bass S. C. Adaptive noise cancellation for a class of
nonlinear, dynamic reference channels // IEEE Trans. on Circuits and Systems. −
1985. − V. 35. − ¹ 2. − P. 143−150.
      138. Uppala S. V., Sahr J. D. On the design of the quadratic filters with
application to image processing // IEEE Trans. on Image Processing. − 1997. − V. 6.
− ¹ 4. − P. 608−616.
      139. Yasui S. Stochastic functional Fourier series, Volterra series, and
nonlinear systems analysis // IEEE Trans. on Automatic Control. − 1979. − V. 24. − ¹
2. − P. 230−242.
      140. Yin L., Astola J., Neuvo Y. A new class of nonlinear filters-neural filters
// IEEE Trans. on Signal Processing. − 1993. − V. 41. − ¹ 3. − P. 1201−1222.
      141. Zaknich A., Attikiouzel Y. Application of artificial neural networks to
nonlinear signal processing, Computational Intelligence: A dynamic System
Perspective // IEEE Press, November, 1995. − P. 292−311.