ВУЗ:
Составители:
Решение:
Упрощенная схема:
5.13. Как решать логические задачи?
Разнообразие логических задач очень велико. Способов их решения тоже немало. Но
наибольшее распространение получили следующие три способа решения логических
задач:
• средствами алгебры логики;
• табличный;
• с помощью рассуждений.
Познакомимся с ними поочередно.
I. Решение логических задач средствами алгебры логики
Обычно используется следующая схема решения:
1. изучается условие задачи;
2. вводится система обозначений для логических высказываний;
3. конструируется логическая формула, описывающая логические связи между всеми
высказываниями условия задачи;
4. определяются значения истинности этой логической формулы;
5. из полученных значений истинности формулы определяются значения истинности
введённых логических высказываний, на основании которых делается заключение
о решении.
Пример 1. Трое друзей, болельщиков автогонок "Формула-1", спорили о результатах
предстоящего этапа гонок.
— Вот увидишь, Шумахер не придет первым, — сказал Джон. Первым будет Хилл.
— Да нет же, победителем будет, как всегда, Шумахер, — воскликнул Ник. — А об
Алези и говорить нечего, ему не быть первым.
Питер, к которому обратился Ник, возмутился:
— Хиллу не видать первого места, а вот Алези пилотирует самую мощную машину.
По завершении этапа гонок оказалось, что каждое из двух предположений двоих
друзей подтвердилось, а оба предположения третьего из друзей оказались неверны. Кто
выиграл этап гонки?
Решение. Введем обозначения для логических высказываний:
Решение:
Упрощенная схема:
5.13. Как решать логические задачи?
Разнообразие логических задач очень велико. Способов их решения тоже немало. Но
наибольшее распространение получили следующие три способа решения логических
задач:
• средствами алгебры логики;
• табличный;
• с помощью рассуждений.
Познакомимся с ними поочередно.
I. Решение логических задач средствами алгебры логики
Обычно используется следующая схема решения:
1. изучается условие задачи;
2. вводится система обозначений для логических высказываний;
3. конструируется логическая формула, описывающая логические связи между всеми
высказываниями условия задачи;
4. определяются значения истинности этой логической формулы;
5. из полученных значений истинности формулы определяются значения истинности
введённых логических высказываний, на основании которых делается заключение
о решении.
Пример 1. Трое друзей, болельщиков автогонок "Формула-1", спорили о результатах
предстоящего этапа гонок.
— Вот увидишь, Шумахер не придет первым, — сказал Джон. Первым будет Хилл.
— Да нет же, победителем будет, как всегда, Шумахер, — воскликнул Ник. — А об
Алези и говорить нечего, ему не быть первым.
Питер, к которому обратился Ник, возмутился:
— Хиллу не видать первого места, а вот Алези пилотирует самую мощную машину.
По завершении этапа гонок оказалось, что каждое из двух предположений двоих
друзей подтвердилось, а оба предположения третьего из друзей оказались неверны. Кто
выиграл этап гонки?
Решение. Введем обозначения для логических высказываний:
Страницы
- « первая
- ‹ предыдущая
- …
- 146
- 147
- 148
- 149
- 150
- …
- следующая ›
- последняя »
