Аналитическая геометрия. Шурыгин В.В. - 40 стр.

UptoLike

Составители: 

(a, b) = a
1
b
1
+ a
2
b
2
+ . . . + a
n
b
n
= (Φ(a), Φ(b)).
{e
i
} : E
n
3 a 7→ {a
i
} = {a
1
, . . . , a
n
} R
n
a {a
i
}
{e
i
}
n
3
(a, b) = |a||b|cos ϕ
(E
n
, g)
E
0
m
E
n
E
n
g
0
= g|
E
0
m
×E
0
m
: E
0
m
× E
0
m
3 {a, b} 7→ g(a, b) R
g E
0
m
(E
0
m
, g
0
)
(E
0
m
, g
0
)
(E
n
, E
n
, ψ) (E
0
, E
0
, ψ
0
)
Φ : A A
0
ϕ : E
n
E
0
n
E
n
E
0
n
{O, e
i
}
E
n
{O
0
, e
0
i
} E
0
n
Φ M E
n
(x
i
M
)
{O, e
i
} M
0
E
0
n
9b79*8/9 0[-;-3O0[;-; *b170L-bN b*18-3,N .3-/836,/8b\ .-/1-7?12
‚/;= ‚]]ƒƒ
                  (a, b) = a1 b1 + a2 b2 + . . . + an bn = (Φ(a), Φ(b)).                           
   { )6/8,-/80\ -8-+36|*,0* {e } : E 3 a 7→ {a } = {a , . . . , a } ∈ R \                  i   1           n               n
-8,-/9}** b*18-32 a ,6+-3 *:- 1--3L0,68 {a } -8,-/08*7?,- -38-,-3;03-K
                                                           i           n
                                                                                   i
b6,,-:- +6[0/6 {e } \ · 0[-;-3O0[; *b170L-bN b*18-3,N .3-/836,/8b=
   „610; -+36[-;\ / 8-),-/8?J L- 0[-;-3O0[;6\ 0;**8/9{8-7?1-      -L,- *bK
                                   i


170L-b- b*18-3,-* .3-/836,/8b- L6,,-M 36[;*3,-/80 n = )6/8,-/80\ b/*
*b170L-b b*18-3,* .3-/836,/8b6 36[;*3,-/80 3 0[-;-3O, .3-/836,K
/8b2 /b-+-L,N b*18-3-b :*-;*830)*/1-:- .3-/836,/8b6 /- /86,L638,;
/16793,; .3-0[b*L*,0*; b*18-3-b (a, b) = |a||b| cos ϕ =
   {/91-* .-L.3-/836,/8b- b *b170L-b-; b*18-3,-; .3-/836,/8b* /6;- 9bK
79*8/9 *b170L-b; b*18-3,; .3-/836,/8b-;=
   ˜Txw™ušxXWxZ ›œžŸ (E , g) Ž”‰‹ŒªŠ”Š ”މžŠŠŽ ¡Šžž”Š¥
            ¡Šª¡Šžž”Š ” E Œ
                                               n
 0
E ⊂E
 m        n                                                        n

                    g 0 = g|E0 m ×E0m : E0m × E0m 3 {a, b} 7→ g(a, b) ∈ R
   Š©Œ¤ŽŒŽ ¬Œ‹ŒŽ¦Š©Š ŠžŠ¬»ŽŒ£ g  ¡Šª¡Šžž”Š E § ¨Šº
©ª (E , g ) Ž”‰‹ŒªŠ”Š ”މžŠŠŽ ¡Šžž”Ч
                                                                                                                   0
                                                                                                                   m
      0       0
   éuyÍêÍzx™ë¶ztuZ H636 (E , g ) -)*b0L,; -+36[-; 2L-b7*8b-39*8 b/*;
      m
                                               0       0
2/7-b09; -.3*L*7*,09 *b170L-b6 b*18-3,-:- .3-/836,/8b6= 
                                               m


   ϳTxwx™xXWxZ ›œžŸ (E , E , ψ) Œ (E , E , ψ ) ª” Ž”‰‹ŒªŠ”‘Ð ÉɌº     0   0       0
‘Ð ¡Šžž”§ ¢Š’ŠÉŒ¢’ ÉɌ‘Ð ¡Šžž” Φ : A → A º
                                           n       n


¢‘”Žž£ Œ¢Š’ŠÉŒ¢’Š’ Ž”‰‹ŒªŠ”‘Ð ÉɌ‘Ð ¡Šžž”¥ Ž‹Œ Šº
                                                                                                                       0



ьŒŠ”‘¦ Œ¢Š’ŠÉŒ¢’ ”މžŠ‘Ð ¡Šžž” ϕ : E → E £”‹£Žžº
£ Œ¢Š’ŠÉŒ¢’Š’ Ž”‰‹ŒªŠ”‘Ð ”މžŠ‘Ð ¡Šžž”§
                                                                                                       0
                                                                                               n           n


   ˜Txw™ušxXWxZ ôÀ¬‘Ž ª” Ž”‰‹ŒªŠ” ÉɌ‘Ð ¡Šžž” ŠªŠ¦ ¢º
’ސŠžŒ E Œ E Œ¢Š’ŠÉ‘§  0
   éuyÍêÍzx™ë¶ztuZ H2/8? {O, e } · .3-0[b-7?,M -38-,-3;03-b6,,M 3*K
                   n       n


.*3 b E \ 6 {O , e } · .3-0[b-7?,M -38-,-3;03-b6,,M 3*.*3 b E \ 8-:L6
                                                   i


-8-+36|*,0* Φ \ -8,-/9}** 8-)1* M ∈ E \ 0;*J}*M 1--3L0,68 (x ) -8,-K
                       0   0                                                                                   0
      n                        i                                                                               n


/08*7?,- 3*.*36 {O, e } \ 8-)12 M ∈ E \ 0;*J}2J 8* |* /6;* 1--3L0,68
                                                                                                               i
                                                                           n                                   M
                                                               0       0
                                       i                               n
                                    ¸Ý