Аналитическая геометрия. Шурыгин В.В. - 53 стр.

UptoLike

Составители: 

α(x
i
A
) = 1 > 0 α(x
i
B
) = 25 < 0
α(x
i
C
) = 6 > 0
` AB BC K
` AC
(ACK) =
AK
KC
=
α(x
i
A
)
α(x
i
C
)
=
1
6
,
|
AK| < |
KC| ` AC
A
A
K
C
B
`
`
1
`
2
A
1
x
1
+ A
2
x
2
+ A
3
= 0 B
1
x
1
+ B
2
x
2
+ B
3
= 0
x
1
= x
1
0
; x
2
= x
2
0
(
A
1
x
1
+ A
2
x
2
+ A
3
= 0
B
1
x
1
+ B
2
x
2
+ B
3
= 0,
M(x
1
0
; x
2
0
)
`
1
`
2
λ µ
λ(A
1
x
1
+ A
2
x
2
+ A
3
) + µ(B
1
x
1
+ B
2
x
2
+ B
3
) = 0
  àxÿxXWxZ ­;= 30/2,-1 ÆÚ = —;**;† α(x ) = 1 > 0 \ α(x ) = −25 < 0 \
               ­                                              H
                                                              i                       i

α(x ) = 6 > 0 = 7*L-b68*7?,-\ ` .*3*/*16*8 /8-3-, AB 0 BC = 2/8? K
                                                              A                       B


· 8-)16 .*3*/*)*,09 ` / .39;-M AC = „61 161 .3-/8-* -8,-I*,0*
   i
   C


                                       −−→
                                       AK      α(xiA )     1
                               (ACK) = −−→ = −     i )
                                                       = −   ,
                                       KC      α(x         6
                                                                   )
                                                   C
8- |−AK| < |KC| \ .-~8-;2 ` .*3*/*16*8 .3-L-7|*,0* /8-3-, AC [6 8- K
     −→     −−→
12 A =
                                              B
                                                                  `




                           K              A                               C

                               Ç0/= ÆÚ =
   àxyuµxXwSxµÍ´ ™WzxTÍzSTÍá âãä \ 7*1 00 ò\ _Å â•ä \ :76b6 @\ åòÅ âòä \ :76b6 ò\
å•=
    ðÍwÍñW W S³T͚XxXW´á â]ä \ •ãÆ\ •ãÚ\ •ãa\ •a•\ •aã\ •a`\ •`•\ •`]\ •`Æ\ •`Ú\
•`ò\ •`_\ •`ã\ •`a\ ]^^\ ]^•\ ]^]\ ]^_\ ]^ã\ ]^`\ ]Æ_\ ]Æã\ ]Æa\ ]Ú_\ ]ÚãÅ âÚä \
8*;6 •]=
ZÊ óTÍtXxXWx ³SñyÍ ³T´µUõ W xVu ³TWµxXxXWxZ
H2/8? L6, Lb* .*3*/*16J}0*/9 ‚36[70),*ƒ .39;* ` 0 ` \ [6L6,,*\
/--8b*8/8b*,,-\ 236b,*,09;0 A x + A x + A = 0 0 B x + B x + B = 0 =
                                                  1       2
                                                                                  1
                                                                                  1
                                                                                          2
                                                                                              2

Ç*I*,0* x = x ; x = x /0/8*; 236b,*,0M
                                              1       2           3           1           2       3
           1       1       2     2
                   0             0
                                  (
                                      A1 x1 + A2 x2 + A3 = 0
                                      B1 x1 + B2 x2 + B3 = 0,
1-8-3-* b L6,,-; /72)6* /2}*/8b2*8 0 *L0,/8b*,,-\-.3*L*79*8 8-)12 M (x ; x )
.*3*/*)*,09 ` 0 ` = H30 7J+N λ 0 µ \ ,* 36b,N ,27J -L,-b3*;*,,-\ 236bK
                                                                                                      1   2
                                                                                                      0   0


,*,0*          1       2



                       1
                           1
                                  2
                                      2
             λ(A x + A x + A ) + µ(B x + B x + B ) = 0
                                              3           1
                                                              1     ‚Æaƒ
                                                                      2
                                                                          2
                                                                              3
                                   ¾–