Аналитическая геометрия. Шурыгин В.В. - 51 стр.

UptoLike

Составители: 

(x
1
0
; x
2
0
)
A
1
x
1
0
+ A
2
x
2
0
+ A
3
= 0
A
1
(x
1
x
1
0
) + A
2
(x
2
x
2
0
) = 0 `
a = {−A
2
; A
1
} M
0
(x
1
0
; x
2
0
)
a ` (36)
A
1
a
1
+ A
2
a
2
= 0.
` (36)
Ox
1
A
1
= 0
` (36)
Ox
2
A
2
= 0
` `
0
A
1
x
1
+
A
2
x
2
+ A
3
= 0 A
0
1
x
1
+ A
0
2
x
2
+ A
0
3
= 0
` `
0
A
0
1
A
1
=
A
0
2
A
2
6=
A
0
3
A
3
.
` `
0
A
0
1
A
1
=
A
0
2
A
2
=
A
0
3
A
3
.
` `
0
A
0
1
A
1
6=
A
0
2
A
2
.
` A(x
1
A
; x
2
A
) B(x
1
B
; x
2
B
)
A M
0
AB
a
r = r
A
+ t(r
B
r
A
) x
i
= x
i
A
+ t(x
i
B
x
i
A
), i = 1, 2,
x
1
x
1
A
x
1
B
x
1
A
=
x
2
x
2
A
x
2
B
x
2
A
x
1
x
1
A
x
2
x
2
A
x
1
B
x
1
A
x
2
B
x
2
A
= 0.
   éuyÍêÍzx™ë¶ztuZ H2/8? (x ; x ) · .3-0[b-7?,-* 3*I*,0* 236b,*,09 ‚Æ_ƒ\
8- */8?\ A x + A x + A = 0 = {)0869 ~8- /--8,-I*,0* 0[ ‚Æ_ƒ\ .-72)0;
                                               1     2
                                               0     0

                                )
                1          2

A (x − x ) + A (x − x ) = 0 \ 8- 9b79*8/9 236b,*,0*; .39;-M ` \ 0;*JK
              1 0        2 0          3


}*M ,6.36b79J}0M b*18-3 a = {−A ; A } 0 .3-N-L9}*M )*3*[ 8-)12 M /
 1        1   1         2 2          2
              0                      0


1--3L0,686;0 (x ; x ) =    1    2
                                                              2   1                                0


   s™xw¶ztW´Z 莉žŠ a ¡‹‹Ž‹Ž ¡£’Ц ` ¥ ¢ªŠ¦ œ”ŽŒŽ’ (36) ¥
                           0    0


žŠ©ª Œ žŠ‹Ÿ‰Š žŠ©ª¥ ‰Š©ª
                                                A1 a1 + A2 a2 = 0.
   ›£’£ ` ¥ ¢ª£ œ”ŽŒŽ’ (36) ¥ ¡‹‹Ž‹Ÿ ‰ŠŠ ªŒžŠ¦ ŠŒ
        ª               ª ª
Ox žŠ©  Œ žŠ‹Ÿ‰Š žŠ© ¥ ‰Š©  A = 0 §
   ›£’£ ` ¥ ¢ª£ œ”ŽŒŽ’ (36) ¥ ¡‹‹Ž‹Ÿ ‰ŠŠ ªŒžŠ¦ ŠŒ
     1
                                                             1

        ª               ª ª
Ox žŠ©  Œ žŠ‹Ÿ‰Š žŠ© ¥ ‰Š©  A = 0 =
   H2/8? Lb* .39;* ` 0 ` [6L6,\ /--8b*8/8b*,,-\ 236b,*,09;0 A x +
     2
                                                             2
                                           0                                                       1

A x + A = 0 0 A x + A x + A = 0 = „-:L6†
                                                                                               1

   H39;* ` 0 ` .63677*7?, b /83-:-; /;/7* /7-b6 8-:L6 0 8-7?1- 8-:L6\
      2                        0 1        0 2            0
 2            3                1          2              3
                       0
1-:L6
                                                   A01   A02    A03
                                                       =     6=     .
     H39;* ` 0 ` /-b.6L6J8 8-:L6 0 8-7?1- 8-:L6\ 1-:L6
                           0
                                                   A1    A2     A3


                                                   A01   A02   A03
                                                       =     =     .
                                                   A1    A2    A3
     H39;* ` 0 ` .*3*/*16J8/9 b -L,-M 8-)1* 8-:L6 0 8-7?1- 8-:L6\ 1-:L6
                           0


                                                         A01    A02
                                                             6=     .
                                                         A1     A2
   óTÍtXxXW´ ³T´µuÌ & ³Tuõuw´'xÌ ñxTxê wtx wÍXXUx zuñyWZ ‡79 /-/86b7*K
,09 œ”ŽŒ£ ¡£’Ц ` ¥ ¡ŠÐŠª£«Ž¦ ¤ŽŽ¢ ª”Ž žŠ¤‰Œ A(x ; x ) 0 B(x ; x ) \
L-/868-),- b[98? 8-)12 A [6 M \ 6 b*18-3 −AB
                                                                                   1   2       1       2
                                           → [6 ,6.36b79J}0M b*18-3
                                                                       a=
                                                                                   A   A       B       B

{ 3*[27?868* .-72)0; /7*L2J}0* 236b,*,09†            0



     r = rA + t(rB − rA )            ⇐⇒              xi = xiA + t(xiB − xiA ),   i = 1, 2,    ⇐⇒

                  x1 − x1A    x2 − x2A                             x1 − x1A x2 − x2A
                            = 2                          ⇐⇒                            = 0.
                  x1B − x1A  xB − x2A                              x1B − x1A x2B − x2A
                                                             ¾Ü