Аналитическая геометрия. Часть I. Шурыгин В.В. - 13 стр.

UptoLike

Составители: 

8
6
x = 0 a + x = a
a = 1 · a = (1 + 0)a = 1 · a + 0 · a = a + 0 · a.
7
λ · 0 = λ(0 · a) = (λ · 0)a = 0 · a = 0.
(1) · a + a = (1) · a + 1 · a = ((1) + 1) · a = 0 · a (1) · a = a.
n
a
1
+ a
2
+ . . . + a
n
V
n = 3 2
k
k + 1
k! n = k + 1
k
C
1
, . . . , C
k
C
i
a
i
+a
i+1
(a
i
+ a
i+1
) + a
i+2
a
i
+ (a
i+1
+ a
i+2
)
C
i
C
i+1
V
a
1
, a
2
, . . . , a
k
λ
1
, λ
2
, . . . , λ
k
λ
1
a
1
+ λ
2
a
2
+ . . . + λ
k
a
k
.
   éuyÍêÍzx™ë¶ztuZ H*3b-* 36b*,/8b- ‚Úƒ /7*L2*8 0[ 61/0-; 8 \ 6 0 *L0,K         ◦       ◦
/8b*,,-/80 3*I*,09 x = 0 236b,*,09 a + x = a †
                     a = 1 · a = (1 + 0)a = 1 · a + 0 · a = a + 0 · a.
{8-3-* 36b*,/8b- ‚Úƒ /7*L2*8 0[ 61/0-; 7 0 .*3b-:- 36b*,/8b6 ‚Úƒ†
                                                           ◦


                          λ · 0 = λ(0 · a) = (λ · 0)a = 0 · a = 0.
„3*8?* 36b*,/8b- ‚Úƒ L-16[b6*8/9 /7*L2J}0; -+36[-;†
 (−1) · a + a = (−1) · a + 1 · a = ((−1) + 1) · a = 0 · a ⇒ (−1) · a = −a.
   ðÍwÍñÍ rZ ‡-16|08*\ 0/.-7?[29 ;*8-L ;68*;680)*/1-M 0,L21 00\ )8-
3*[27?868 b)0/7*,09 /2;; n b*18-3-b
                               a + a + ... + a
                                           1     2             n
                                                                      ‚òƒ
b b*18-3,-; .3-/836,/8b* V ,* [6b0/08 -8 36//86,-b10 /1-+-1=
   óyÍêÍXWxZ ˆ/,-b6,0*; 0,L21 00 ‚.30 n = 3ƒ 9b79*8/9 61/0-;6 2 6/K
/- 0680b,-/80 /7-|*,09 b*18-3-b= H*3*N-L -8 /2;; k b*18-3-b 1 /2;;*
                                                                                            ◦


                                                      {
k + 1 b*18-36 -/2}*/8b79*8/9 /7*L2J}0; -+36[-; = [6b0/0;-/80 -8 .-K
39L16 -/2}*/8b7*,09 L*M/8b0M ‚/7-|*,09 Lb2N b*18-3-bƒ\ b/*:- 0;**8/9
                   )                 ò                 H
k! /.-/-+-b b 0/7*,09 /2;; ‚ ƒ .30 n = k + 1 = - 8-;2\ 161-* L*MK
/8b0* -/2}*/8b79*8/9 .*3b;\ b/* ~80 /.-/-+ 36[+0b6J8/9 ,6 k 176//-b
                                                             H
C , . . . , C ‚b 176//* C .*3b-* L*M/8b0* · /7-|*,0* a +a ƒ = - .3*L.-7-K
|*,0J 0,L21 00 b/* /.-/-+ b)0/7*,09 /2;;\ .30,6L7*|6}0* -L,-;2
 1          k               i                                         i   i+1


176//2\ L6J8 -L0, 0 8-8 |* 3*[27?868= €- .- .3*L.-7-|*,0J 0,L21 00
-L0, 0 8-8 |* 3*[27?868 L6J8 861|* 7J+* Lb6 /.-/-+6\ ,6)0,6J}0*/9 /
(a + a ) + a 0 / a + (a + a ) \ 8- */8? 7J+* Lb6 /.-/-+6 0[ 176//-b
C 0C         .30b-L98 1 -L,-;2 3*[27?8682=
  i   i+1           i+2     i        i+1       i+2

 i    i+1

±Z± ËWXxÌXÍ´ êÍtW¶Wµu¶zë txyzuTutZ
H3-L-7|6*; 36//;6830b68? .3-0[b-7?,-* b*18-3,-* .3-/836,/8b- V =
   ϳTxwx™xXW´Z ôŒŽ¦Š¦ ‰Š’¬ŒÑŒŽ¦ ”މžŠŠ” a , a , . . . , a  ‰ŠÃÉɌº
ьŽž’Œ λ , λ , . . . , λ ¢‘”Žž£ ”މžŠ
                1     2         k
                                                                      1   2         k



                                    λ1 a1 + λ2 a2 + . . . + λk ak .
                                                     ܖ