Аналитическая геометрия. Часть III. Многомерные пространства. Гиперповерхности второго порядка. Шурыгин В.В. - 40 стр.

UptoLike

Составители: 

A
n
A
C
n
A
n
Φ A
C
n
{O; e
i
} A
n
a
ij
x
i
x
j
+ 2a
i n+1
x
i
+ a
n+1 n+1
= 0, a
ij
, a
i n+1
R.
Φ A
C
n
(n1)
C
C
F (x
k
) F (x
1
, . . . , x
n
)
x
k
x
`
k 6= ` a
ij
x
i
x
j
x
k
x
`
a
k`
x
`
x
k
a
` k
x
2
x
5
a
25
x
2
x
5
a
52
x
5
x
2
a
ij
= a
ji
n
X
i=1
a
ii
(x
i
)
2
+
n
X
i<j
2a
ij
x
i
x
j
+
n
X
i=1
2a
i n+1
x
i
+ a
n+1 n+1
= 0.
Φ n = 2 n = 3
A
2
a
11
(x
1
)
2
+ 2a
12
x
1
x
2
+ a
22
(x
2
)
2
+ 2a
13
x
1
+ +2a
23
x
2
+ a
33
= 0,
A
3
a
11
(x
1
)
2
+ a
22
(x
2
)
2
+ a
33
(x
3
)
2
+ 2a
12
x
1
x
2
+ 2a
13
x
1
x
3
+ 2a
23
x
2
x
3
+
+2a
14
x
1
+ 2a
24
x
2
+ 2a
34
x
3
+ a
44
= 0
ø #LPOQPNUOQùMNRSL USNQNúN PNQûëéT U TKKLMMNü PQNRSQTMý
  RSUO(
 5//:5730B5*: 5„„0,,-* .3-/735,/7B- An B:*/7* / ,*1-7-3-” *9- 1-:
.6*1/0„015½0*” ACn <
   VWXYZY[Y\]Y^ þaemfegkmfrbghi‚{ kigfgxg egftnvj k A bjlckjmiht
dbgymhikg igsm Φ ⊂ ACn w gigfgm k hahimdm ggf abjiw gefmnmotmp
                  v         v                 v  n   n


dgu bmvgigfcd j``abbcd fmemfgd {O; ei} efghifjbhikj An w ljnjmiht
}fjkbmbamd kigfgu himemba
              i j         i
            aij x x + 2ai n+1 x + an+1 n+1 = 0,                •²G‹
                                                               aij , ai n+1 ∈ R.
    @,-“*/7B- Φ ⊂ AC  -)*B0D,-  ,* 8B68*7/8 .2/7A:< ’30D5B58 (n − 1) -”
1--3D0,57* .3-0EB-6>,A* E,5)*,08 •0E C‹ .-62)0: 1B5D357,-* 235B,*,0* 
                        n


1-7-3-* 35E3*‰0:- ,5D C <
    @,-9-)6*, B 6*B-” )5/70 235B,*,08 •²G‹ +2D*: -+-E,5)57> D68 13571-
/70 F (xk ) 060 F (x1, . . . , xn) <
     5“D-* .3-0EB*D*,0* xk x` .30 „01/03-B5,,AC E,5)*,08C 0,D*1/-B
             )                                    ²‹
k 6= ` B/73* 5*7/8 B /2::* aij xi xj B 235B,*,00 • G DB5 35E5~ xk x` / 1-¨
                                                                           „
„0½0*,7-: a 0 x`xk / 1-¨„„0½0*,7-: a < 5.30:*3  x2x5 /-D*3“07/8 B
/6595*:AC a25x2x5 0 a52x5x2 < D56>,*”‰*: B/*9D5 /)075*: )7- aij = aji <
               k`                           `k


’30 ¨7-: 235B,*,0* •²G‹ :-“,- .*3*.0/57> B B0D*
          n
          X                   n
                              X                  n
                                                 X
                     i 2                i j
                 aii (x ) +         2aij x x +         2ai n+1 xi + an+1 n+1 = 0.
           i=1                i‡ B7-3-9- .-38D15< /--7B*7/7B00 / .30,87A: /-965‰*,0*:
235B,*,0* 130B-” B7-3-9- .-38D15 B A2 E5.0/AB5*7/8 B B0D*
        a11 (x1 )2 + 2a12 x1 x2 + a22 (x2 )2 + 2a13 x1 + +2a23 x2 + a33 = 0,
5 235B,*,0* .-B*3C,-/70 B7-3-9- .-38D15 B A3 F B B0D*
     a11 (x1 )2 + a22 (x2 )2 + a33 (x3 )2 + 2a12 x1 x2 + 2a13 x1 x3 + 2a23 x2 x3 +
                      +2a14 x1 + 2a24 x2 + 2a34 x3 + a44 = 0 <

                                              ´Ñ