Аналитическая геометрия. Часть III. Многомерные пространства. Гиперповерхности второго порядка. Шурыгин В.В. - 38 стр.

UptoLike

Составители: 

e
i
b
i
= (b, e
i
) = ε(a
1
, . . . , a
n1
, e
i
) =
a
1
1
a
1
2
. . . a
1
n1
0
a
i
1
a
i
2
. . . a
i
n1
1
a
n
1
a
n
2
. . . a
n
n1
0
,
i
6
E
n
b =
[a
1
, . . . , a
n1
]
b
j
= eε
j
i
1
...i
n1
·
a
i
1
1
. . . a
i
n1
n1
,
eε
j
i
1
...i
n1
·
= ε
i
1
...i
n1
k
g
kj
.
e
b(x) = ε(a
1
, . . . , a
n1
, x)
b
k
= ε(a
1
, . . . , a
n1
, e
k
) = ε
i
1
...i
n1
k
a
i
1
1
. . . a
i
n1
n1
b
j
= b
k
g
kj
= ε
i
1
...i
n1
j
g
jm
a
i
1
1
. . . a
i
n1
n1
α : E
n
E
n
{e
k
} y
i
= α
i
j
x
j
+ b
i
vol (u
1
, . . . , u
n
) n
P (u
1
, . . . , u
n
)
|det ku
j
k
k|
α P (u
1
, . . . , u
n
)
P (v
1
, . . . , v
n
) v
k
= bα(u
k
v
i
k
= α
i
j
u
j
k
vol (v
1
, . . . , v
n
) = |det kv
i
k
k| = |det kα
i
j
u
j
k
k| = |det kα
i
j
k|·|det ku
`
k
k| =
|det kα
i
j
k|·vol (u
1
, . . . , u
n
).
n E
n
α : E
n
E
n
n
Φ E
n
Φ
0
vol
0
)/vol (Φ)
α n
n
{e
k
} {O; e
k
}
0 6 x
i
6 1 i = 1, . . . , n
7-3 ei  .-62)0:
                                                                       a11 a12 . . . a1n−1 0
                                                                        << << < < <          <<       <<
           bi = (b, ei ) = ε(a1 , . . . , an−1 , ei ) = ai1 ai2 . . . ain−1 1                               ,
                                                                        << << < < <          <<       <<
                                                                       an1 an2 . . . ann−1 0
)7- -)*B0D,- /-B.5D5*7 / i 7-” 1--3D0,57-” B*17-35 /7-8ˆ*9- B .35B-”
)5/70 35B*,/7B5 •²Š‹<
    6◦ < .3-0EB-6>,-” /0/7*:* 1--3D0,57 B En 1--3D0,57A B*17-35 b =
                       )
[a1 , . . . , an−1 ] BA 0/68‡7/8 /6*D2‡ˆ0: -+35E-:~
                                j            i
              bj = εei1 ...in−1 · ai11 . . . an−1
                                               n−1
                                                   ,       9D*               j
                                                                  εei1 ...in−1 · = εi1 ...in−1 k g kj .
    £—™œ¤œšY[¥˜š›—^ *”/7B07*6>,-  .-/1-6>12 b(x)              e     = ε(a1 , . . . , an−1 , x)  7-
bk = ε(a1 , . . . , an−1 , ek ) = εi ...i k ai1 . . . an−1 0 bj = bk g kj = εi ...i j g jm ai1 . . . an−1 <
                                                       i
                                                       1         n−1                                  i         1   n−1

    Ž—›YZY\]Y —­ôY—› WX] œ]\\× WXY—­Xœ¤—›œ\]®×^
                                        1   n−1                                                   1   n−1




    ’2/7> 5„„0,,-* .3*-+35E-B5,0* α : En → En B -37-,-3:03-B5,,-:
+5E0/* {ek } E5D5,- 235B,*,08:0 yi = αji xj + bi < +Ö*: vol (u1, . . . , un) n
:*3,-9- .53566*6*.0.*D5 P (u1, . . . , un) B /--7B*7/7B00 / „-3:26-” •±¶‹ 35
B*, | det kujk k | < ’30 5„„0,,-: .3*-+35E-B5,00 α .53566*6*.0.*D P (u1, . . . , un)
.*3*C-D07 B .53566*6*.0.*D P (v1, . . . , vn)  9D* vk = αb(uk  vki = αji ujk < ’-
¨7-:2 vol (v1, . . . , vn) = | det kvki k | = | det kαji ujk k | = | det kαji k |·| det ku`k k | =
| det kαji k | · vol (u1 , . . . , un ). 510: -+35E-:  D68 n :*3,AC 7*6 B En  D68 1-
7-3AC -.3*D*6*,- .-,870* -+Ö*:5 •,5.30:*3  D68 :,-9-935,,01-B‹ /.35
B*D60B- /6*D2‡ˆ** .3*D6-“*,0* <
    ŽXYZ[—¡Y\]Y^ ž}hi‚ efa j``abbgd efmg|fjlgkjbaa α : E → E n pdmf p
bgm imog Φ ⊂ En emfmrgnai k imog Φ0 € ¢gxnj gibg¾mbam g|ömdgk
                                                                                n       n

                                                          n n
vol (Φ0 )/vol (Φ) mhi‚ kmoasabj eghigtbbjt ot jbbgxg j``abbgxg efmg|fjp
lgkjbat α w fjkbjt g|ömd} g|fjlj n pdmfbgxg v}|j h fm|fgd noabc mnaba†j€
    /60 3*+35 n :*3,-9- 12+5 / 3*+3-: D60,A *D0,0½5 .3*D/75B68‡7 /-+-”
B*17-3A {ek } -37-,-3:03-B5,,-9- 3*.*35 {O; ek }  7- ¨7-7 12+ E5D5*7/8
/0/7*:-” ,*35B*,/7B 0 6 xi 6 1  i = 1, . . . , n <
                                                           ´Î